

1 Introduction
Notes

Problem: binary relationship from inputs to outputs

Algorithm: procedure mapping each input to a single output

An algorithm solves a problem if it returns a correct output for each and every problem input
Correctness:

For small inputs: can use case analysis
For arbitrarily large inputs: algorithm either is recursive or loop in some way. Use induction.

input constant logarithmic linear log-linear quadratic polynomial exponential

Time

Efficiency: how fast does an algorithm produce a correct output?

Count the number of fixed time operations algorithm takes to return
Asymptotic Notation: ignore constant factors and low order terms

µ µ

Model of Computation: what operations on the machine can be performed in time.

Machine word: block of w bits (w is word size of a w-bit Word-RAM)

Memory: Addressable sequence of machine words

Processor supports many constant time operations on a number of words (integers):

integer arithmetic: (+, -, *, //, %)
logical operators: (&&, ||, !, ==, <, >, <=, =>)
bitwise arithmetic: (&, |, <<, >>, ...)
Given word a, can read word at address a, write word to address a

Data Structure : a way to store non-constant data, that supports a set of operations

A collection of operations is called an interface

Example:

Sequence: Extrinsic order to items (first, last, nth)
Set: Intrinsic order to items (queries based on item keys)

Data structures may implement the same interface with different performance

Example: Static Array - fixed width slots, fixed length, static sequence interface

StaticArray(n) : allocate static array of size n initialized to 0 in time
StaticArray.get_at(i) : return word stored at array index i in time
StaticArray.set_at(i, x) : write word x to array index i in time

More on Asymptotic Notation

 Notation:

Non-negative function is in if and only if there exists a positive real number and
positive integer such that for all .

 Notation:

Non-negative function is in if and only if there exists a positive real number c and
positive integer such that for all .

:

af://n2
af://n3
af://n104

Type Interface Specification

Container build(X) given an iterable X, build sequence from items in X

 len() return the number of stored items

Static iter_seq() return the stored items one-by-one in sequence order

 get_at(i) return the item

 set_at(i, x) replace the item with x

Dynamic insert_at(i, x) add as the item

 delete_at(i, x) remove and return the item

 insert_fist(x) add as the first item

 delete_first(x) remove and return the first item

 insert_last(x) add as the last item

 delete_last(x) remove and return the last item

Non-negative is in if and only if

2 Data Structures
Notes

Data Structure Interfaces

A data structure is a way to store data, with algorithms that support operations on the data
Collection of supported operations is called an interface (also API or ADT)
Interface is a specification: what operations are supported (the problem!)
Data structure is a representation: how operations are supported (the solution!)

Sequence Interface (L02, L07)

Maintain a sequence of items (order is extrinsic)
Ex: (, , , . . . ,) (zero indexing)
(use n to denote the number of items stored in the data structure)
Supports sequence operations:

Special case interfaces:

stack: insert_last(x) and delete_last()
queue: insert_last(x) and delete_first()

Set Interface (L03-L08)

Sequence about extrinsic order, set is about intrinsic order

Maintain a set of items having unique keys (e.g., item x has key x.key)

(Set or multi-set? We restrict to unique keys for now.)

Often we let key of an item be the item itself, but may want to store more info than just key

Supports set operations:

af://n121
af://n122
af://n123
af://n133
af://n200

Sequence Data
Structure

API Type Worst Case

Array Container Static Dynamic

API build(x)
get_at(i)

set_at(i)

insert_first(x)

delete_first()

insert_last(x)

delete_last()

insert_at(i,

x)

delete_at(i)

Array

Type Interface Specification

Container build(X) given an iterable X, build sequence from items in X

 len() return the number of stored items

Static find(k) return the stored item with key k

Dynamic insert(x) add x to set (replace item with key x.key if one already exist)

 delete(x) remove and return the stored item with key k

Order iter_ord() return the stored items one-by-one in key order

 find_min() return the stored item with smallest key

 find_max() return the stored item with largest key

 find_next(k) return the stored item with smallest key larger than k

 find_prev(k) return the stored item with largest key smaller than k

Special case interfaces:

dictionary: set without the Order operations

Array Sequence

Array is great for static operations! get at(i) and set at(i, x) in Θ(1) time!

But not so great at dynamic operations...

(For consistency, we maintain the invariant that array is full)

Then inserting and removing items requires:

reallocating the array
shifting all items after the modified item

Linked List Sequence

Pointer data structure (this is not related to a Python “list”)
Each item stored in a node which contains a pointer to the next node in sequence
Each node has two fields: node.item and node.next
Can manipulate nodes simply by relinking pointers!
Maintain pointers to the first node in sequence (called the head)
Can now insert and delete from the front in time! Yay!
(Inserting/deleting efficiently from back is also possible; you will do this in PS1)
But now get_at(i) and set_at(i, x) each take time... :(
Can we get the best of both worlds? Yes! (Kind of...)

af://n263
af://n307

Sequence Data
Structure

API Type Worst Case

Array Container Static Dynamic

API build(x)
get_at(i)

set_at(i)

insert_first(x)

delete_first()

insert_last(x)

delete_last()

insert_at(i,

x)

delete_at(i)

Linked List
 # 1 if we keep

track of tail

Sequence Data
Structure

API Type Worst Case

Array Container Static Dynamic

API build(x)
get_at(i)

set_at(i)

insert_first(x)

delete_first()

insert_last(x)

delete_last()

insert_at(i,

x)

delete_at(i)

Dynamic Array

Dynamic Array Sequence

Make an array efficient for last dynamic operations
Python “list” is a dynamic array
Idea! Allocate extra space so reallocation does not occur with every dynamic operation
Fill ratio: the ratio of items to space
Whenever array is full (), allocate extra space at end to fill ratio (e.g., 1/2)
Will have to insert items before the next reallocation
A single operation can take time for reallocation
However, any sequence of operations takes time
So each operation takes time “on average”

Amortized Analysis

Data structure analysis technique to distribute cost over many operations
Operation has amortized cost if k operations cost at most
“ amortized” roughly means “on average” over many operations
Inserting into a dynamic array takes amortized time

Dynamic Array Deletion

Delete from back? time without effort, yay!
However, can be very wasteful in space. Want size of data structure to stay
Attempt: if very empty, resize to r = 1. Alternating insertion and deletion could be bad...
Idea! When , resize array to ratio where (e.g.,)
Then cheap operations must be made before next expensive resize
Can limit extra space usage to for any (set)
Dynamic arrays only support dynamic last operations in time
Python List append and pop are amortized time, other operations can be !
(Inserting/deleting efficiently from front is also possible; you will do this in PS1)

af://n356
af://n405
af://n415

Sequence Data
Structure

API Type Worst Case

Array Container Static Dynamic

API build(x)
get_at(i)

set_at(i)

insert_first(x)

delete_first()

insert_last(x)

delete_last()

insert_at(i,

x)

delete_at(i)

Static Array

Linked List
 # 1 if we keep

track of tail

Dynamic Array

Set Data
Structure

API Type
Worst Case

Set Container Static Dynamic

API build(x) find(k)
insert(k)
delete(k)

find_min()
find_max()

find_prev(k)
find_next(k)

Array

Sorted Array

3 Sorting
Notes

Set Interface

Storing items in an array in arbitrary order can implement a (not so efficient) set

Stored items sorted increasing by key allows:

faster find min/max (at first and last index of array)
faster finds via binary search:

But how to construct a sorted array efficiently?

Sorting

Given a sorted array, we can leverage binary search to make an efficient set data structure.

Input: (static) array A of n numbers

Output: (static) array B which is a sorted permutation of A

Permutation: array with same elements in a different order
Sorted: B[i - 1] ≤ B[i] for all

Example:

A sort is destructive if it overwrites (instead of making a new array that is a sorted version of)

A sort is in place if it uses extra space (implies destructive: in place ⊆ destructive)

Permutation Sort

There are permutations of A, at least one of which is sorted. (Due to duplications)
For each permutation, check whether sorted in
Example:

af://n478
af://n479
af://n480
af://n530
af://n549

permutation sort analysis:

Correct by case analysis: try all possibilities (Brute Force)
Running time: which is exponential :(

Solving Recurrences

Substitution: Guess a solution, replace with representative function, recurrence holds true
Recurrence Tree: Draw a tree representing the recursive calls and sum computation at nodes
Master Theorem: A formula to solve many recurrences (R03)

Selection Sort

Find a largest number in prefix A[:i + 1] and swap it to A[i]
Recursively sort prefix A[:i]
Example:

prefix_max analysis:

Base case: for i = 0 , array has one element, so index of max is

Induction: assume correct for , maximum is either the maximum of A[:i] or A[i] , returns
correct index in either case. □

Substitution: ,
Recurrence tree: chain of nodes with work per node,

Insertion Sort

Recursively sort prefix A[:i]
Sort prefix A[:i + 1] assuming that prefix A[:i] is sorted by repeated swaps
Example:

def permutation_sort(A):
 """Sort A"""
 for B in permutations(A): # O(n!)
 if is_sorted(B): # O(n)
 return B

def selection_sort(A, i=None):
 """Sort A[:i+1]"""
 if i is None: i = len(A) - 1
 if i > 0:
 j = prefix_max(A, i)
 A[i], A[j] = A[j], A[i]
 selection_sort(A, i - 1)

def prefix_max(A, i):
 """Return index of maximum in A[:i+1]"""
 if i > 0:
 j = prefix_max(A, i - 1)
 if A[i] < A[j]:
 return j
 return i

af://n566
af://n574
af://n598

insert_last analysis:

Base case: for , array has one element so is sorted
Induction: assume correct for , if , array is sorted; otherwise, swapping last
two elements allows us to sort A[:i] by induction. □

insertion_sort analysis:

Base case: for , array has one element so is sorted
Induction: assume correct for , algorithm sorts A[:i] by induction, and then insert last
correctly sorts the rest as proved above. □

Merge Sort

Recursively sort first half and second half (may assume power of two)
Merge sorted halves into one sorted list (two finger algorithm)
Example:

merge analysis:

Base case: for , arrays are empty, so vacuously correct
Induction: assume correct for , item in A[r] must be a largest number from remaining
prefixes of left and right , and since they are sorted, taking largest of last items suffices;
remainder is merged by induction. □

def insertion_sort(A, i=None):
 """Sort A[:i+1]"""
 if i is None: i = len(A) - 1
 if i > 0:
 insertion_sort(A, i-1)
 insert_last(A, i)

def insert_last(A, i):
 """Sort A[:i+1] assuming sorted A[:i]"""
 if i > 0 and A[i] < A[i-1]:
 A[i], A[i-1] = A[i-1], A[i]
 insert_last(A, i-1)

def merge_sort(A, lo=0, hi=None):
 """Sort A[lo:hi]"""
 if hi is None: hi = len(A)
 if hi - lo > 1:
 mid = (lo + hi + 1) // 2
 merge_sort(A, lo, mid)
 merge_sort(A, mid, hi)
 left, right = A[lo:mid], A[mid:hi]
 merge(left, right, A, len(left), len(right), lo, hi)

def merge(left, right, A, i, j, lo, hi):
 """Merge sorted left[:i] anr right[:j] into A[lo:hi]"""
 if lo < hi:
 if (j <= 0) or (i > 0 and left[i-1] > right[j-1]):
 A[hi-1] = left[i-1]
 i -= 1
 else:
 A[hi-1] = right[j-1]
 j -= 1
 merge(left, right, A, i, j, lo, hi -1)

af://n626

case solution conditions

1 for some constant

2 for some constant

3
 for some constant

and for some constant

case solution conditions intuition

1 Work done at leaves dominates

2 Work balanced across the tree

3 Work done at root dominates

merge_sort analysis:

Base case: for , array has one element so is sorted

Induction: assume correct for , algorithm sorts smaller halves by induction, and then
merge merges into a sorted array as proved above. □

Substitution: Guess

Recurrence Tree: complete binary tree with depth and leaves, level has nodes

with work each, total:

Master Theorem

The Master Theorem provides a way to solve recurrence relations in which recursive calls decrease
problem size by a constant factor.
Given a recurrence relation of the form and , with branching
factor , problem size reduction factor , and asymptotically non-negative function ,
the Master Theorem gives the solution to the recurrence by comparing to , the
number of leaves at the bottom of the recursion tree.
When grows asymptotically faster than , the work done at each level decreases geometrically
so the work at the root dominates;
alternatively, when grows slower, the work done at each level increases geometrically and the
work at the leaves dominates.
When their growth rates are comparable, the work is evenly spread over the tree’s levels.

The Master Theorem takes on a simpler form when f(n) is a polynomial, such that the recurrence has
the from for some constant .

This special case is straight-forward to prove by substitution (this can be done in recitation).
To apply the Master Theorem (or this simpler special case), you should state which case applies, and
show that your recurrence relation satisfies all conditions required by the relevant case.

af://n660

There are even stronger (more general) formulas to solve recurrences, but we will not use them in
this class.

4 Hashing
Notes

Comparison Model

In this model, assume algorithm can only differentiate items via comparisons
Comparable items: black boxes only supporting comparisons between pairs
Comparisons are , outputs are binary: True or False
Goal: Store a set of n comparable items, support find(k) operation
Running time is lower bounded by # comparisons performed, so count comparisons!

Decision Tree

Any algorithm can be viewed as a decision tree of operations performed
An internal node represents a binary comparison, branching either True or False
For a comparison algorithm, the decision tree is binary (draw example)
A leaf represents algorithm termination, resulting in an algorithm output
A root-to-leaf path represents an execution of the algorithm on some input
Need at least one leaf for each algorithm output, so search requires leaves

Comparison Search Lower Bound

What is worst-case running time of a comparison search algorithm?
running time # comparisons max length of any root-to-leaf path height of tree
What is minimum height of any binary tree on nodes?
Minimum height when binary tree is complete (all rows full except last)

, so running time of any comparison sort is S
Sorted arrays achieve this bound! Yay!
More generally, height of tree with leaves and max branching factor is
To get faster, need an operation that allows super-constant branching factor. How??

Direct Access Array

Exploit Word-RAM time random access indexing! Linear branching factor!
Idea! Give item unique integer key k in , store item in an array at index
Associate a meaning with each index of array.
If keys fit in a machine word, i.e. , worst-case find/dynamic operations! Yay!
6.006: assume input numbers/strings fit in a word, unless length explicitly parameterized
Anything in computer memory is a binary integer, or use (static) 64-bit address in memory
But space , so really bad if ... :(
Example: if keys are ten-letter names, for one bit per name, requires TB space
How can we use less space?

Hashing

Idea! If , map keys to a smaller range and use smaller direct access array

Hash function: (also hash map)

Direct access array called hash table, called the hash of key k

If , no hash function is injective by pigeonhole principle

Always exists keys such that Collision! :(

Can’t store both items at same index, so where to store? Either:

http://en.wikipedia.org/wiki/Akra-Bazzi_method
af://n721
af://n722
af://n723
af://n735
af://n749
af://n767
af://n787

store somewhere else in the array (open addressing)

complicated analysis, but common and practical
store in another data structure supporting dynamic set interface (chaining)

Chaining

Idea! Store collisions in another data structure (a chain)
If keys roughly evenly distributed over indices, chain size is
If chain has size, all operations take time! Yay!
If not, many items may map to same location, e.g. , chain size is :(
Need good hash function! So what’s a good hash function?

Hash Functions

Division (bad):

Heuristic, good when keys are uniformly distributed!
 should avoid symmetries of the stored keys

Large primes far from powers of 2 and 10 can be reasonable
Python uses a version of this with some additional mixing
If , every hash function will have some input set that will a create size chain
Idea! Don’t use a fixed hash function! Choose one randomly (but carefully)!

Universal (good, theoretically):

Hash Family
Parameterized by a fixed prime , with and chosen from range

 is a Universal family:

Why is universality useful? Implies short chain lengths! (in expectation)
 indicator random variable over

Size of chain at index is random variable
Expected size of chain at index :

Since , load factor , so in expectation!

Dynamic

If far from 1, rebuild with new randomly chosen hash function for new size m
Same analysis as dynamic arrays, cost can be amortized over many dynamic operations
So a hash table can implement dynamic set operations in expected amortized O(1) time! :)

af://n809
af://n821
af://n822
af://n836
af://n856

Data Structure API Type
Worst Case

Set Container Static Dynamic

API build(x) find(k)
insert(k)
delete(k)

find_min()
find_max()

find_prev(k)
find_next(k)

Array

Sorted Array

Direct Access
Array

Hash Table

5 Linear Sorting
Notes

Comparison Sort Lower Bound

Comparison model implies that algorithm decision tree is binary (constant branching factor)
Requires # leaves L ≥ # possible outputs
Tree height lower bounded by , so worst-case running time is
To sort array of n elements, # outputs is n! permutations
Thus height lower bounded by
So merge sort is optimal in comparison model
Can we exploit a direct access array to sort faster?

Direct Access Array Sort

Example:
Suppose all keys are unique non-negative integers in range , so
Insert each item into a direct access array with size in
Return items in order they appear in direct access array in
Running time is , which is if . Yay!

What if keys are in larger range, like ?
Idea! Represent each key by tuple where and
Specifically and (just a 2-digit base-n number!)
This is a built-in Python operation
Example:
How can we sort tuples?

def direct_access_sort(A):
 """Sort A assuming items have distinct non-negative keys."""
 u = 1 + max([x.key for x in A])
 D = [None] * u
 for x in A:
 D[x.key] = x
 i = 0
 for key in range(u):
 if D[key] is not None:
 A[i] = D[key]
 i += 1

af://n914
af://n915
af://n916
af://n932

Tuple Sort

Item keys are tuples of equal length, i.e. item .
Want to sort on all entries lexicographically, so first key is most significant
How to sort? Idea! Use other auxiliary sorting algorithms to separately sort each key
(Like sorting rows in a spreadsheet by multiple columns)
What order to sort them in? Least significant to most significant!
Exercise:
Idea! Use tuple sort with auxiliary direct access array sort to sort tuples (a, b).
Problem! Many integers could have the same a or b value, even if input keys distinct
Need sort allowing repeated keys which preserves input order
Want sort to be stable: repeated keys appear in output in same order as input
Direct access array sort cannot even sort arrays having repeated keys!
Can we modify direct access array sort to admit multiple keys in a way that is stable?

Counting Sort

Instead of storing a single item at each array index, store a chain, just like hashing!
For stability, chain data structure should remember the order in which items were added
Use a sequence data structure which maintains insertion order
To insert item x , insert_last to end of the chain at index
Then to sort, read through all chains in sequence order, returning items one by one

Radix Sort

Idea! If , use tuple sort with auxiliary counting sort to sort tuples (a, b)
Sort least significant key b, then most significant key a
Stability ensures previous sorts stay sorted
Running time for this algorithm is . Yay!
If every for some positive , every key has at most digits base
A c-digit number can be written as a c-element tuple in time
We sort each of the c base-n digits in time
So tuple sort with auxiliary counting sort runs in time in total
If c is constant, so each key is , this sort is linear !

def counting_sort(A):
 """Sort A assuming items have non-negative keys."""
 u = 1 + max([x.key for x in A])
 D = [[] for i in range(u)]
 for x in A:
 D[x.key].append(x)
 i = 0
 for chain in D:
 for x in chain:
 A[i] = x
 i += 1

def radix_sort(A):
 """Sort A assuming items have non-negative keys"""
 n = len(A)
 u = 1 + max([x.key for x in A])
 c = 1 + (u.bit_length() // n.bit_length())

 class Obj: pass

 D = [Obj() for a in A]
 for i in range(n):

af://n958
af://n984
af://n997

Algorithm Time In-place? Stable? Comments

Insertion Sort Y Y for k-proximate

Selection Sort Y N swaps

Merge Sort N Y stable, optimal comparison

Counting Sort N Y when

Radix Sort N Y when

Sequence Data
Structure

API Type Worst Case

Array Container Static Dynamic

API build(x)
get_at(i)

set_at(i)

insert_first(x)

delete_first()

insert_last(x)

delete_last()

insert_at(i,

x)

delete_at(i)

Static Array

Linked List
 # 1 if we keep

track of tail

Dynamic Array

Goal

Set Data
Structure

API Type
Worst Case

Set Container Static Dynamic

API build(x) find(k)
insert(k)
delete(k)

find_min()
find_max()

find_prev(k)
find_next(k)

Array

Sorted Array

Goal

6 Binary Trees, Part 1
Notes

 D[i].digits = []
 D[i].item = A[i]
 high = A[i].key
 for j in range(c):
 high, low = divmod(high, n)
 D[i].digits.append(low)
 for i in range(c):
 for j in range(n):
 D[j].key = D[j].digits[i]
 counting_sort(D)
 for i in range(n);
 A[i] = D[i].item

af://n1055
af://n1056

How? Binary Trees!

Pointer-based data structures (like Linked List) can achieve worst-case performance
Binary tree is pointer-based data structure with three pointers per node
Node representation: node.{item, parent, left, right}
Example:

Terminology

The root of a tree has no parent (Ex: <A>)

leaf of a tree has no children (Ex: <C> , <E> , and <F>)

Define depth(<X>) of node <X> in a tree rooted at <A> to be length of path from <A> to <X>

Define height(<X>) of node <X> to be max depth of any node in the subtree rooted at <X>

Idea: Design operations to run in time for root height , and maintain

A binary tree has an inherent order: its traversal order (In-order traversal)

every node in node <X> ’s left subtree is before <X>
every node in node <X> ’s right subtree is after <X>

List nodes in traversal order via a recursive algorithm starting at root:

Recursively list left subtree, list self, then recursively list right subtree
Runs in time, since work is done to list each node
Example: Traversal order is (<F> , <D> , , <E> , <A> , <C>)

Right now, traversal order has no meaning relative to the stored items

Later, assign semantic meaning to traversal order to implement Sequence/Set interfaces

Tree Navigation

Find first node in the traversal order of node <X> 's subtree (last is symmetric)

Otherwise, <X> is the first node, so return it
Running time is where h is the height of the tree
Example: first node in <A> 's subtree is <F>

class TreeNode:
 def __init__(self, x):
 self.item = x
 self.left = None
 self.right = None
 self.parent = None

def subtree_iter(A):
 if A.left: yield from A.left.subtree_iter()
 yield A
 if A.right: yield from A.right.subtree_iter()

af://n1150
af://n1162
af://n1196

Find successor of node <X> in the traversal order (predecessor is symmetric)

If <X> has right child, return first of right subtree
Otherwise, return lowest ancestor of <X> for which <X> is in its left subtree
Running time is where is the height of the tree
Example: Successor of: is <E> , <E> is <A> , and <C> is None.

Dynamic Operations

Change the tree by a single item (only add or remove leaves):

add a node after another in the traversal order (before is symmetric)
remove an item from the tree

Insert node <Y> after <X> in the traversal order

If <X> has no right child, make <Y> the right child of <X>
Otherwise, make <Y> the left child of <X> 's successor (which cannot have a left child)
Running time is where is the height of the tree

def subtree_first(A):
 if A.left: return A.left.subtree_first()
 return A

def subtree_last(A):
 if A.right: return A.right.subtree_last()
 return A

def successor(A):
 if A.right: return A.right.subtree_first()
 while A.parent and (A is A.parent.right):
 A = A.parent
 return A.parent

def predecessor(A):
 if A.left: return A.left.subtree_last()
 while A.parent and (A is A.parent.left):
 A = A.parent
 return A.parent

af://n1221

Delete the item in node <X> from <X> 's subtree

If <X> is a leaf, detach from parent and return

Otherwise, <X> has a child

If <X> has a left child, swap items with the predecessor of <X> and recurse
Otherwise <X> has a right child, swap items with the successor of <X> and recurse

Running time is where is the height of the tree

Application: Set

Idea! Set Binary Tree (a.k.a Binary Search Tree / BST)

Traversal order(In-order) is sorted order increasing by key

Equivalent to BST Property: for every node, every key in left subtree node's key every key
in right subtree

Then can find the node with key in node <X> 's subtree in time like binary search:

If is smaller than the key at <X> , recurse in left subtree (or return None)
If is larger than the key at <X> , recurse in right subtree (or return None)
Otherwise, return the item stored at <X>

Other Set operations follow a similar pattern

def subtree_insert_before(A, B):
 if A.left:
 A = A.left.subtree_last()
 A.right, B.parent = B, A
 else:
 A.left, B.parent = B, A

def subtree_insert_after(A, B):
 if A.right:
 A = A.right.subtree_first()
 A.left, B.parent = B, A
 else:
 A.right, B.parent = B, A

def subtree_delete(A):
 if A.left or A.right: # A is a leaf node
 if A.left: B = A.predecessor()
 else: B = A.successor()
 A.item, B.item = B.item, A.item
 if A.parent: # A is not a leaf node
 if A.parent.left is A: A.parent.left = None
 else: A.parent.right = None
 return A

af://n1258

class BSTNode(TreeNode):
 def subtree_find(A, k):
 if k == A.item.key: return A
 if k < A.item.key and A.left: return A.left.subtree_find(k)
 if k > A.item.key and A.right: return A.right.subtree_find(k)

 def subtree_find_next(A, k):
 if A.item.key <= k:
 if A.right: return A.right.subtree_find_next(k)
 else: return None
 if A.item.key > k:
 if A.left:
 B = A.left.subtree_find_next(k)
 if B: return B
 return A

 def subtree_find_prev(A, k):
 if A.item.key >= k:
 if A.left: return A.left.subtree_find_prev(k)
 else: return None

 if A.item.key < k:
 if A.right:
 B = A.right.subtree_find_prev(k)
 if B: return B
 return A

 def subtree_insert(A, B):
 if B.item.key < A.item.key:
 if A.left: A.left.subtree_insert(B)
 else: A.subtree_insert_before(B)
 elif B.item.key > A.item.key:
 if A.right: A.right.subtree_insert(B)
 else: A.subtree_insert_after(B)
 else: A.item = B.item

class BinaryTree:
 def __init__(self, node_type=BinaryNode):
 self.root = None
 self.size = 0
 self.node_type = node_type

 def __len__(self): return self.size
 def __iter__(self):
 if self.root:
 for item in self.root.subtree_iter():
 yield node.item

class BinaryTreeSet(BinaryTree):
 def __init__(self):
 super().__init__(node_type=BSTNode)

 def iter_order(self): yield from self

 def build(self, X):
 for x in X: self.insert(x)

 def find_min(self):
 if self.root: return self.root.subtree_first().item

 def find_max(self):
 if self.root: return self.root_subtree_last().item

Application: Sequence

Idea! Sequence Binary Tree: Traversal order is sequence order

How do we find node in traversal order of a subtree? Call this operation subtree_at(i)

Could just iterate through entire traversal order, but that’s bad,

However, if we could compute a subtree’s size in , then can solve in time

How? Check the size of the left subtree and compare to
If , recurse on the left subtree
If , recurse on the right subtree with
Otherwise, , and you’ve reached the desired node!

Maintain the size of each node’s subtree at the node via augmentation

Add node.size field to each node
When adding new leaf, add to a.size for all ancestors a in time
When deleting a leaf, add to a.size for all ancestors a in time

Sequence operations follow directly from a fast subtree_at(i) operation

Naively, build(X) takes time, but can be done in time; see recitation

7 Binary Tree II: AVL
Notes

 def find(self, k):
 if self.root:
 node = self.root.subtree_find(k)
 if node: return node.item

 def find_next(self, k):
 if self.root:
 node = self.root.subtree_find_next(k)
 if node: return node.item

 def find_prev(self, k):
 if self.root:
 node = self.root.subtree_find_prev(k)
 if node: return node.item

 def insert(self, x):
 new_node = self.node_type(x)
 if self.root:
 self.root.subtree_insert(new_node)
 if new_node.parent is None: return False
 else:
 self.root = new_node
 self.size += 1

 def delete(self, k):
 assert self.root
 node = self.root.subtree_find(k)
 assert node
 ext = node.subtree_delete()
 if ext.parent is None: self.root = None
 self.size -= 1
 return ext.item

af://n1279
af://n1311
af://n1312

Height Balance

How to maintain height where is number of nodes in tree?

A binary tree that maintains height under dynamic operations is called balanced

There are many balancing schemes (Red-Black Trees, Splay Trees, 2-3 Trees, ...)
First proposed balancing scheme was the AVL Tree(Adelson-Velsky and Landis, 1962)

Rotations

Need to reduce height of tree without changing its traversal order, so that we represent the same
sequence of items.

How to change the structure of a tree, while preserving traversal order? Rotations!

A rotation relinks pointers to modify tree structure and maintains traversal order

Rotations Suffice

Claim: rotations can transform a binary tree to any other with same traversal order
Proof: Repeatedly perform last possible right rotation in traversal order; resulting tree is a canonical
chain. Each rotation increases depth of the last node by 1. Depth of last node in final chain is ,
so at most rotations are performed. Reverse canonical rotations to reach target tree. Q.E.D
Can maintain height-balance by using rotations to fully balance the tree, but slow :(
We will keep the tree balanced in time per operation!

def subtree_rotate_right(D):
 assert D.left
 B, E = D.left, D.right
 A, C = B.left, B.right

 # make sure new B has the right connection to D's parent
 D, B = B, D
 D.item, B.item = D.item, B.item

 B.left, B.right = A, D
 D.left, D.right = C, E

 if A: A.parent = B
 if E: E.parent = D

def subtree_rotate_left(B):
 assert B.right
 A, D = B.left, B.right
 C, E = D.left, D.right

 B, D = D, B
 B.item, D.item = D.item, B.item

 D.left, D.right = B, E
 B.left, B.right = A, C

 if A: A.parent = B
 if E: E.parent = D

af://n1313
af://n1324
af://n1334

AVL Trees: Height Balance

AVL trees maintain height-balance (also called the AVL property)

A node is height-balanced if heights of its left and right subtree differ by at most 1
Let skew of a node be the height of its right subtree minus that of its left subtree
Then a node is height-balanced if its skew is or

Claim: A binary tree with height-balanced nodes has height (i.e.,)

Proof: Suffices to show fewest nodes in any height tree is

Suppose adding or removing leaf from a height-balanced tree results in imbalance

Only subtree of the leaf's ancestors have changed in height or skew
Heights changed by only , so skews still have magnitude
Idea: Fix height-balance of ancestors starting from leaf up to the root
Repeatedly rebalanced lowest ancestor that is not height-balanced, wlog assume skew 2

Local Rebalance: Given binary tree node :

whose skew 2 and
every other node in 's subtree is height-balanced
then ’s subtree can be made height-balanced via one or two rotations
(after which <B? ’s height is the same or one less than before)

Proof:

Since skew of is 2, ? ’s right child exists

Case 1: skew of <F> is 0 or Case 2: skew of <F> is 1

Perform a left rotation on

TBC

Computing Height

How to tell whether node is height-balanced? Compute heights of subtrees!

How to compute the height of node <X> ? Naive algorithm:

Recursively compute height of the left and right subtrees of <X>
Add to the max of the two heights
Runs in time, since we recurse on every node :(

Idea: Augment each node with the height of its subtree! (Save for later!)

Height of <X> can be computed in time from the heights of its children:

Look up the stored heights of left and right subtrees in time
Add to the max of the two heights

During dynamic operations, we must maintain our augmentation as the tree changes shape

Recompute subtree augmentations at every node whose subtree changes:

Update relinked nodes in a rotation operation in time (ancestors don’t change)
Update all ancestors of an inserted or deleted node in time by walking up the tree

Steps to Augment a Binary Tree

In general, to augment a binary tree with a subtree property P, you must:

State the subtree property P(<X>) you want to store at each node <X>
Show how to compute P(<X>) from the augmentations of <X> ’s children in time
Then stored property P(<X>) can be maintained without changing dynamic operation costs

af://n1344
af://n1394
af://n1425

Application: Sequence

For sequence binary tree, we needed to know subtree sizes

For just inserting/deleting a leaf, this was easy, but now need to handle rotations

Subtree size is a subtree property, so can maintain via augmentation

Can compute size from sizes of children by summing them and adding 1

Conclusion

Set AVL trees achieve time for all set operations
except time for build and time for iter
Sequence AVL trees achieve time for all sequence operations
except time for build and iter

Application: Sorting

Any Set data structure defines a sorting algorithm: build (or repeatedly insert) then iter
For example, Direct Access Array Sort from Lecture 5
AVL Sort is a new time sorting algorithm

8 Binary Heaps
Notes

Priority Queue Interface

Keep track of many items, quickly access/remove the most important

Example: router with limited bandwidth, must prioritize certain kinds of messages
Example: process scheduling in operating system kernels
Example: discrete-event simulation (when is next occurring event?)
Example: graph algorithms (later in the course)

Order items by key = priority so Set interface (not Sequence interface)

Operation Specification

build(X) build priority queue from iterable X

insert(x) add item x to data structure

delete_max() remove and return stored item with largest key

find_max() return stored item with largest key

Optimized for a particular subset of Set operations:

(Usually optimized for max or min, not both)

Focus on insert and delete_max operations: build can repeatedly insert ; find_max() can
insert(delete_min())

class PriorityQueue:
 def __init__(self):
 self.A = []

 def insert(self, x):
 self.A.append(x)

 def delete_max(self):

af://n1436
af://n1447
af://n1457
af://n1465
af://n1466
af://n1467

Priority Queue
Data Structure

Operations

Priority
Queue
Sort

 Algorithm

 build(A) insert(x) delete_max() Time
In-
place?

Dynamic Array Y
Selection
Sort

Sorted Dynamic
Array

Y
Insertion
Sort

Set AVL Tree N AVL Sort

Goal Y Heap Sort

Priority Queue Sort

Any priority queue data structure translates into a sorting algorithm:

build(A) , e.g., insert items one by one in input order
Repeatedly delete_min() (or delete_max()) to determine (reverse) sorted order

All the hard work happens inside the data structure

Running time is

Many sorting algorithms we’ve seen can be viewed as priority queue sort:

Priority Queue: Set AVL Tree

Set AVL trees support insert(x) , find_min() , find_max() , delete_min() , and delete_max() in
 time per operation

So priority queue sort runs in time

This is (essentially) AVL sort from Lecture 7
Can speed up find_min() and find_max() to time via subtree augmentation

But this data structure is complicated and resulting sort is not in-place

Is there a simpler data structure for just priority queue, and in-place sort? YES, binary heap
and heap sort

Essentially implement a Set data structure on top of a Sequence data structure (array), using what we
learned about binary trees

Priority Queue: Array

Store elements in an unordered dynamic array
insert(x) : append x to end in amortized time
delete_max() : find max in , swap max to the end an d remove
insert is quick, but delete_max is slow
Priority queue sort is selection sort! (plus some copying)

 assert len(self.A) > 0
 return self.A.pop() # not correct by it self.

 @classmethod
 def sort(PQ, A):
 pq = PQ()
 for x in A: pq.insert(x)
 out = [pq.delete_max() for _ in A]
 return reversed(out)

af://n1505
af://n1569
af://n1586

We use *args to allow insert to take one argument (as makes sense now) or zero arguments; we will
need the latter functionality when making the priority queues in-place.

Priority Queue: Sorted Array

Store elements in a sorted dynamic array
insert(x) : append x to end, swap down to sorted position in time
delete_max() : delete from end in amortized
delete_max is quick, but insert is slow
Priority queue sort is insertion sort! (plus some copying)
Can we find a compromise between these two array priority queue extremes?

Array as a Complete Binary Tree

Idea: interpret an array as a complete binary tree, with maximum nodes at depth except at the
largest depth, where all nodes are left-aligned
Equivalently, complete tree is filled densely in reading order: root to leaves, left to right
Perspective: bijection between arrays and complete binary trees
Height of complete tree perspective of array of item is , so balanced binary tree

Implicit Complete Tree

Complete binary tree structure can be implicit instead of storing pointers
Root is at index 0
Compute neighbors by index arithmetic:

class PQArray(PriorityQueue):
 def delete_max(self): # O(n)
 n, A, m = len(self.A), self.A, 0
 for i in range(1, n):
 m = i if A[m].key < A[i].key else m
 A[m], A[n] = A[n], A[m]
 return super().delete_max() # pop from end

class PQSortedArray(PriorityQueue):
 def insert(self, x=None):
 if x is not None: super().insert(x)
 i, A = len(self.A) - 1, self.A
 while 0 < i and A[i+1].key < A[i].key:
 A[i+1], A[i] = A[i], A[i+1]
 i -= 1

af://n1600
af://n1615
af://n1627

Binary Heaps

Idea: keep larger elements higher in tree, but only locally

Max-Heap Property at node

Max-heap is an array satisfying max-heap property at all nodes

Claim: In a max-heap, every node i satisfies for all nodes in subtree(i)

Proof:

Induction on
Base case: implies implies (in fact, equal)

, so by induction
 by Max-Heap Property at parent(j)

In particular, max item is at root of max-heap

Heap Insert

Append new item to end of array in amortized, making it next leaf in reading order

max_heapify_up(i) : swap with parent until Max-Heap Property

Check whether (part of Max-Heap Property at parent(i))
If not, swap items and , and recursively max_heapify_up(parent(i))

Correctness:

Max-Heap Property guarantees all nodes descendants, except might be > some of its
ancestors (unless is the root, so we're done)
If swap is necessary, same guarantee is true with instead of

Running time: height of tree, so

Heap Delete Max

Can only easily remote last element from dynamic array, but max key is in root of tree

So swap item at root node with last item at node in heap array

max_heapify_down(i) : swap root with larger child until Max-Heap Property

Check whether (Max-Heap Property at i)
If not, swap with for child with maximum key, and recursively
max_heapify_down(j)

Correctness:

Max-Heap Property guarantees all nodes descendants, except might be < some
descendants (unless is a leaf, so we're done)
If swap is necessary, same guarantee is true with instead of

Running time: height of tree, so

def parent(i):
 p = (i - 1) // 2
 return p if 0 < i else i

def left(i, n):
 l = 2 * i + 1
 return l if l < n else i

def right(i, n):
 r = 2 * i + 2
 return r if r < n else i

class PQHeap(PriorityQueue):

af://n1636
af://n1660
af://n1680

Heap Sort

Plugging max-heap into priority queue sort gives us a new sorting algorithm
Running time is because each insert and delete_max takes
But often include two improvements to this sorting algorithm:

In-place Priority Queue Sort

Max-heap is a prefix of a larger array , remember how many items belong to heap
 is initially zero, eventually (after inserts), then zero again (after deletes)

insert() absorbs next item in array at index into heap
delete_max() moves max item to end, then abandons it by decrementing
In-place priority queue sort with Array is exactly Selection Sort
In-place priority queue sort with Sorted Array is exactly Insertion Sort
In-place priority queue sort with binary Max Heap is Heap Sort

 def insert(self, x=None):
 if x: super().insert(x)
 n, A = self.n, self.A
 max_heapify_up(A, n, n-1)

 def delete_max(self):
 n, A = self.n, self.A
 A[0], A[n] = A[n], A[0]
 max_heapify_down(A, n, 0)
 return super().delete_max()

def max_heapify_up(A, n, c):
 p = parent(c)
 if A[p].key < A[c].key:
 A[c], A[p] = A[p], A[c]
 max_heapify_up(A, n, p)

def max_heapify_down(A, n, p):
 l, r = left(p, n), right(p, n)
 c = l if A[r].key < A[l].key else r
 if A[p].key < A[c].key:
 A[c], A[p] = A[p], A[c]
 max_heapify_down(A, n, c)

class PriorityQueue:
 def __init__(self, A):
 self.n, self.A = 0, A

 def insert(self):
 assert self.n < len(self.A)
 self.n += 1

 def delete_max(self):
 assert self.n >= 1
 self.n -= 1

 @classmethod
 def sort(Queue, A):
 pq = Queue(A)
 for i in range(len(A)): pq.insert()
 for i in range(len(A)): pq.delete_max()
 return pq.A

af://n1703
af://n1711

Linear Build Heap

Inserting items into heap call max_heapify_up(i) for from to (root down):

Idea! Treat full array as a complete binary tree from start, then max_heapify_down(i) for i from
to (leaves up):

So can build heap in time

(Doesn't speed up performance of heap sort)

Sequence AVL Tree Priority Queue

Where else have we seen linear build time for an otherwise logarithmic data structure? Sequence AVL
Tree!

Store items of priority queue in Sequence AVL Tree in arbitrary order (insertion order)

Maintain max (and/or min) augmentation:

node.max = pointer to node in subtree of node with maximum key

This is a subtree property, so constant factor overhead to maintain
find_min() and find _max() in time

delete_min() and delete_max() in time

build(A) in time

Same bounds as binary heaps (and more)

Set vs. Multiset

While our Set interface assumes no duplicate keys, we can use these Sets to implement Multisets that
allow items with duplicate keys:

Each item in the Set is a Sequence (e.g., linked list) storing the Multiset items with the same key,
which is the key of the Sequence

In fact, without this reduction, binary heaps and AVL trees work directly for duplicate-key items
(where e.g. delete_max deletes some item of maximum key), taking care to use ≤ constraints
(instead of < in Set AVL Trees)

9 Breadth-First Search
Notes

Graph Applications

Why? Graphs are everywhere!
any network system has direct connection to graphs
e.g., road networks, computer networks, social networks
the state space of any discrete system can be represented by a transition graph
e.g., puzzle & games like Chess, Tetris, Rubik’s cube

def build_max_heap(A):
 n = len(A)
 for i in range(n // 2, -1, -1):
 max_heapify_down(A, n, i)

af://n1728
af://n1741
af://n1763
af://n1772
af://n1773
af://n1774

e.g., application workflows, specifications

Graph Definitions

Graph is a set of vertices and a set of pairs of vertices

Directed edges are ordered pairs, e.g., for

Undirected edges are unordered pairs, for i.e., and

In this class, we assume all graphs are simple:

edges are distinct, e.g., only occurs once in E (though may appear), and
edges are pairs of distinct vertices, e.g., for all

Simple implies , since for undirected, for directed

Neighbor Sets/Adjacencies

The outgoing neighbor set of is
The incoming neighbor set of is
The out-degree of a vertex is
The in-degree of a vertex is
For undirected graphs, and
Dropping superscript defaults to outgoing, i.e., and

Graph Representations

To store a graph , we need to store the outgoing edges for all
First, need a Set data structure to map to
Then for each , need to store in another data structure called an adjacency list
Common to use direct access array or hash table for , since want lookup fast by vertex
Common to use array or linked list for each since usually only iteration is needed
For the common representations, has size , while each has size
Since by handshaking lemma, graph storable in space
Thus, for algorithms on graphs, linear time will mean (linear in size of graph)

Paths

A path is a sequence of vertices where for all .

A path is simple if it does not repeat vertices

The length of a path is the number of edges in the path

The distance from to is the minimum length of any path from to

i.e., the length of a shortest path from to
(by convention, if is not connected to)

Graph Path Problems

There are many problems you might want to solve concerning paths in a graph:
SINGLE_PAIR_REACHABILITY(G, s, t):
is there a path in from to ?

af://n1788
af://n1806
af://n1820
af://n1838
af://n1853

SINGLE_PAIR_SHORTEST_PATH(G, s, t):
return distance , and a shortest path in from to
SINGLE_SOURCE_SHORTEST_PATHS(G, s):
return for all , and a shortest-path tree containing a shortest path from to every

 (defined below)
Each problem above is at least as hard as every problem above it
(i.e., you can use a black-box that solves a lower problem to solve any higher problem)
We won’t show algorithms to solve all of these problems
Instead, show one algorithm that solves the hardest in time!

Shortest Paths Tree

How to return a shortest path from source vertex for every vertex in graph?
Many paths could have length , so returning every path could require time
Instead, for all , store its parent : second to last vertex on a shortest path from
Let be null (no second to last vertex on shortest path from to)
Set of parents comprise a with size!
(i.e., reversed shortest paths back to from every vertex reachable from)

Breadth-First Search (BFS)

How to compute and for all ?

Store and in Set data structures mapping vertices to distance and parent

(If no path from to , do not store in and set to)

Idea! Explore graph nodes in increasing order of distance

Goal: Compute level sets (i.e., all vertices at distance)

Claim: Every vertex must be adjacent to a vertex (i.e.,)

Claim: No vertex that is in for some , appears in

Invariant: and have been computed correctly for all in any for

Base case

Inductive Step: To compute :

for every vertex in :

for every vertex that does not appear in any for :

add to , set , and set
Repeatedly compute from for for increasing until is the empty set

Set for any for which was not set

Breadth-first search correctly computes all and by induction

Running time analysis:

Store each in data structure with time iteration and time insertion (i.e., in a
dynamic array or linked list)
Checking for a vertex in any for can be done by checking for in
Maintain and in Set data structures supporting dictionary ops in time (i.e., direct
access array or hash table)
Algorithm adds each vertex to level and spends time for each
Work upper bounded by by handshake lemma
Spend at end to assign for vertices not reachable from So
breadth-first search runs in linear time!

def bfs(adj, s):
 parent = [None for v in adj]
 parent[s] = s

af://n1869
af://n1881

10 Depth-First Search
Notes

Depth-First Search (DFS)

Searches a graph from a vertex , similar to BFS

Solves Single Source Reachability, not Single Source Shortest Paths. Useful for solving other problems
(later)!

Return (not necessarily shortest) parent tree of parent pointers back to .

Idea! Visit outgoing adjacencies recursively, but never revisit a vertex

i.e., follow any path until you get stuck, backtrack until finding an unexplored path to explore

, then run , where

visit(u)

for every that does not appear in :

set and recursively call visit(v)
(DFS finishes visiting vertex , for use later!)

 levels = [[s]]
 while 0 < len(levels[-1]):
 level = []
 for u in levels[-1]:
 for v in adj[u]:
 if parent[v] is None:
 parent[v] = u
 level.append(v)
 levels.append(level)
 return parents

def unweighted_shortest_path(adj, s, t):
 parents = bfs(adj, s)
 if parent[t] is None: return None
 i = t
 path = [t]
 while i != s:
 i = parent[i]
 path.append(i)
 return reversed(path)

def dfs(adj, s, parent=None, order=None):
 if parent is None:
 parent = [None for v in adj]
 parent[s] = s
 order = []
 for v in adj[s]:
 if parent[v] is None:
 parent[v] = s
 dfs(adj, v, parent, order)
 order.append(s)
 return parent, order

af://n1936
af://n1937
af://n1938

Correctness

Claim: DFS visits and correctly sets for every vertex reachable from

Proof: induct on , for claim on only vertices within distance from

Base case is set correctly for and is visited
Inductive step: Consider vertex with
Consider vertex , the second to last vertex on some shortest path from to
By induction, since , DFS visits and sets correctly
While visiting , DFS considers
Either is in , so has already been visited, or will be visited while visiting
In either case, will be visited by DFS and will be added correctly to

Running Time

Algorithm visits each vertex at most once and spends time for each
Work upper bounded by
Unlike BFS, not returning a distance for each vertex, so DFS runs in time

Full-BFS and Full-DFS

Suppose want to explore entire graph, not just vertices reachable from one vertex

Idea! Repeat a graph search algorithm on any unvisited vertex

Repeat the following until all vertices have been visited:

Choose an arbitrary unvisited vertex , use to explore all vertices reachable from
We call this algorithm Full-A, specifically Full-BFS or Full-DFS if A is BFS or DFS

Visits every vertex once, so both Full-BFS and Full-DFS run in time

DFS Edge Classification

Consider a graph edge from vertex to , we call the edge a tree edge if the edge is part of the DFS
tree (i.e.)

Otherwise, the edge from to is not a tree edge, and is either:

a back edge - is a descendant of
a forward edge - is a descendant of
a cross edge - neither are descendants of each other

Graph Connectivity

An undirected graph is connected if there is a path connecting every pair of vertices
In a directed graph, vertex may be reachable from , but may not be reachable from
Connectivity is more complicated for directed graphs (we won’t discuss in this class)
Connectivity(G) : is undirected graph G connected?
Connected_Components(G) : given undirected graph , return partition of into subsets

 (connected components) where each is connected in and there are no edges between
vertices from different connected components

def full_dfs(adj):
 parent = [None for v in adj]
 order = []
 for v in range(len(adj)):
 if parent[v] is None:
 parent[v] = v
 dfs(adj, v, parent, order)
 return parent, order

af://n1963
af://n1984
af://n1992
af://n2008
af://n2021

Consider a graph algorithm that solves Single Source Reachability
Claim: can be used to solve Connected Components
Proof: Run Full- . For each run of , put visited vertices in a connected component

Topological Sort

A Directed Acyclic Graph (DAG) is a directed graph that contains no directed cycle

A Topological Order of a graph is an ordering on the vertices such that:
every satisfies

Exercise: Prove that a directed graph admits a topological ordering if and only if it is a DAG

How to find a topological order?

A Finishing Order is the order in which a Full-DFS finishes visiting each vertex in G

Claim: If is a DAG, the reverse of a finishing order is a topological order

Proof: Need to prove, for every that is ordered before ,
i.e., the visit to finishes before visiting . Two cases:

If visited before :

Before visit to finishes, will visit (via or otherwise)
Thus the visit to finishes before visiting

If visited before :

 can’t be reached from since graph is acyclic
Thus the visit to finishes before visiting

Cycle Detection

Full-DFS will find a topological order if a graph is acyclic

If reverse finishing order for Full-DFS is not a topological order, then must contain a cycle

Check if is acyclic: for each edge , check if is before in reverse finishing order

Can be done in time via a hash table or direct access array

To return such a cycle, maintain the set of ancestors along the path back to in Full-DFS

Claim: If contains a cycle, Full-DFS will traverse an edge from to an ancestor of

Proof: Consider a cycle in

Without loss of generality, let be the first vertex visited by Full-DFS on the cycle
For each , before visit to finishes, will visit and finish
Will consider edge , and if has not been visited, it will be visited now
Thus, before visit to finishes, will visit (for the first time, by assumption)
So, before visit to finishes, will consider , where is an ancestor of

11 Weighted Shortest Paths
Notes

Weighted Graphs

A weighted graph is a graph together with a weight function

i.e., assign each edge an integer weight:

Many applications for edge weights in a graph:

distances in road network
latency in network connections

af://n2039
af://n2070
af://n2098
af://n2099
af://n2100

Restrictions SSSP Algorithm

Graph Weights Name Running Time

General Unweighted BFS

DAG Any DAG Relaxation

General Any Bellman-Ford

General Non-negative Dijkstra

strength of a relationship in a social network
Two common ways to represent weights computationlly:

Inside graph representation: store edge weight with each vertex in adjacency lists
Store separate Set data structure mapping each edge to its weight

We assume a representation that allows querying the weight of an edge in time

Examples

Weighted Paths

The weight of a path in a weighted graph is the sum of weights of edges in the path

The (weighted) shortest path from to is path of minimum weight from to

 is the shortest-path weight from to

(Often use "distance" for shortest -path weight in weighted graphs, not number of edges)

As with unweighted graphs:

 if no path from to
Subpaths of shortest paths are shortest paths (or else could splice in a shortest path)

Why infimum not minimum? Possible that no finite-length minimum-weight path exists

When? Can occur if there is a negative-weight cycle in the graph, Ex: in

A negative-weight cycle is a path starting and ending at same vertex

 if there is a path from to through a vertex on a negative-weight cycle

If this occurs, don't want a shortest path, but may want the negative-weight cycle

Weighted Shortest Paths Algorithms

Already know one algorithm: Breadth-First Search! Runs in time when, e.g.:

graph has positive weights, and all weights are the same
graph has positive weights, and sum of all weights at most

For general weighted graphs, we don't know how to solve SSSP in time

But if your graph is a Directed Acyclic Graph you can!

af://n2127
af://n2154

Shortest-Paths Tree

For BFS, we kept track of parent pointers during search. Alternatively, compute them after!

If know for all vertices , can construct shortest-path tree in time

For weighted shortest paths from , only need parent pointers for vertices with finite

Initialize empty and set

For each vertex where is finite:

For each outgoing neighbor :

If not assigned and

There exits a shortest path through edge , so set
Parent pointers may traverse cycles of zero weight. Mark each vertex in such a cycle.

For each unmarked vertex (including vertices later marked):

For each where is marked and

Unmark vertices in cycle containing by traversing parent pointers from
Set , breaking the cycle

Relaxation

A relaxation algorithm searches for a solution to an optimization problem by starting with a solution
that is not optimal, then iteratively improves the solution until it becomes an optimal solution to the
original problem.

DAG Relaxation

Idea! Maintain a distance estimate (initially) for each vertex , that always upper
bounds true distance , then gradually lowers until

When do we lower? When an edge violates the triangle inequality!

Triangle Inequality: the shortest-path weight from to cannot be greater than the shortest path
from to through another vertex , i.e., for all

If for some edge , then triangle inequality is violated :(

Fix by lowering to , i.e., relax to satisfy violated constraint

Claim: Relaxation is safe: maintains that each is weight of a path to (or)

Proof: Assume is weight of a path (or) for . Relaxing some edge sets
 to , which is the weight of a path from to through

Set for all , then set

Process each vertex in a topological sort order of G:

For each outgoing neighbor :

def try_to_relax(adj, w, d, parent, u, v):
 if d[v] > d[u] + w(u, v):
 d[v] = d[u] + w(u, v)
 parent[v] = u

def general_relax(adj, w, s):
 d = [float('inf') for _ in adj]
 parent = [None for _ in adj]
 d[s], parent[s] = 0, s
 while some_edge_relaxable(adj, w, d):
 (u, v) = get_relaxable_edge(adj, w, d)
 try_to_relax(adj, w, d, parent, u, v)
 return d, parent

af://n2205
af://n2238
af://n2243

If

relax edge , i.e., set

Correctness

Claim: At end of DAG Relaxation: for all

Proof: Induct on : for all in first vertices in topological order

Base case: Vertex and every vertex before in topological order satisfies claim at start
Inductive Step: Assume claim holds for first vertices, let be the
Consider a shortest path from to , and let be the vertex preceding on path

 occurs before in topological order, so by induction
When processing is set to be no larger than
But since relaxation is safe, so

Alternatively:

For any vertex , DAG relaxation sets
Shortest path to must pass through some incoming neighbor of
So if for all by induction, then

Running Time

Initialization takes time, and Topological Sort takes time
Additional work upper bounded by
Total running time is linear,

12 Bellman-Ford
Notes

Simple Shortest Paths

If graph contains cycles and negative weights, might contain negative-weight cycles :(

If graph does not contain negative-weight cycles, shortest paths are simple!

Claim 1: If is finite, there exists a shortest path to that is simple

Proof: By contradiction:

Suppose no simple shortest path: let be a shortest path with fewest vertices
 not simple, so exists cycle in ; has non-negative weight (or else)

Removing form forms path with fewest vertices and weight
Since simple paths cannot repeat vertices, finite shortest paths contain at most edges

def DAGRelaxation(adj, w, s):
 _, order = dfs(adj, s)
 d = [float('inf') for _ in adj]
 parent = [None for _ in adj]
 d[s], parent[s] = 0, s
 for u in order:
 for v in adj[u]:
 try_to_relax(adj, w, d, parent, u, v)
 return d, parent

af://n2273
af://n2301
af://n2309
af://n2310
af://n2311

Negative Cycle Witness

k-Edge Distance : the minimum weight of any path from to using edges

Idea! Compute and for all

If , since a shortest path is simple (or nonexistent)

If

there exists a shorter non-simple path to , so
call a (negative cycle) witness

However, there may be vertices with shortest-path weight that are not witness

Claim 2: if , then is reachable from a witness

Proof: Suffices to prove: every negative-weight cycle reachable from s contains a witness

Consider a negative-weight cycle reachable from
For , let denote ’s predecessor in , where
Then (RHS weight of some path on vertices)
so
If contains no witness, for all , a contradiction

Bellman-Ford

Idea! Use graph duplication: make multiple copies (or levels) of the graph

 levels: vertex in level represents reaching vertex from using edges

If edges only increase in level, resulting graph is a DAG!

Construct new DAG from

 has vertices for all and

 has edges:

 edges for of weight zero for each
 edges for of weight for each

Run DAG Relaxation on from to compute for all

For each vertex: set

For each witness where

For each vertex reachable from in :

set

af://n2330
af://n2363

TBC

Running Time

 has size and can be constructed in as much time
Running DAG Relaxation on takes linear time in the size of
Does work for each vertex reachable from a witness
Finding reachability of a witness takes time, with at most witnesses:
(Alternatively, connect super node to witnesses via 0-weight edges, linear search from)
Pruning at start to only subgraph reachable from yields time algorithm

13 Dijkstra's Algorithm
Notes

INF = float('inf')

def bellman_ford(adj, w, s):
 # initialization
 d = [INF for _ in adj]
 parent = [None for _ in adj]
 d[s], parent[s] = 0, s
 V = len(adj)

 # construct shortest paths in rounds
 for k in range(V-1):
 for u in range(V):
 for v in adj[u]:
 try_to_relax(adj, w, d, parent, u, v)

 # check for negative weight cycles accessible from s
 for u in range(V):
 for v in adj[u]:
 if d[v] > d[u] + w(u, v):
 raise Exception("found a negative weight in cycle!")
 return d, parent

af://n2398
af://n2412
af://n2413

Non-negative Edge Weights

Idea! Generalize BFS approach to weighted graphs:

Grow a sphere centered at source s
Repeatedly explore closer vertices before further ones
But how to explore closer vertices if you don't know distances beforehand? :(

Observation 1: If weights non-negative, monotonic distance increasing along shortest paths

i.e., if vertex appears on a shortest path from to , then
Let be the subset of vertices reachable within distance from
If then any shortest path from to only contains vertices from
Perhaps grow one vertex at a time! (but growing for every is slow if weights large)

Observation 2: Can solve SSSP fast if given order of vertices in increasing distance from

Remove edges that go against this order (since cannot participate in shortest paths)
May still have cycles if zero-weight edges: repeatedly collapse into single vertices
Compute for each using DAG relaxation in time

Dijkstra's Algorithm

Idea! Relax edges from each vertex in increasing order of distance from source

Idea! Efficiently find next vertex in the order using a data structure

Operation Specification

Q.build(X) initialize with items in iterator X

Q.delete_min() remove an item with minimum key

Q.decrease_key(id, k) find stored item with ID id and change key to k

Changeable Priority Queue on items with keys and unique IDs, supporting operations:

Implement by cross-linking a Priority Queue and a Dictionary mapping IDs into

Assume vertex IDs are integers from to so can use a direct access array for D

For brevity, say item x is the tuple

Set for all , then set

Build changeable priority queue with an item for each vertex

For vertex in outgoing adjacencies :

If :

Relax edge , i.e., set
Decrease the key of in to new estimate

af://n2414
af://n2445

def dijkstra(adj, w, s):
 d = [INF for _ in adj]
 parent = [None for _ in adj]
 d[s], parent[s] = 0, s
 Q = PriorityQueue()
 V = len(adj)
 for v in range(V):
 Q.insert(v, d[v]) # label and key
 for _ in range(V):
 u = Q.extract_min() # get label for item with min key
 for v in adj[u]:
 try_to_relax(adj, w, d, parent, u, v)
 Q.decrease_key(v, d[v]) # alter key for given label
 return d, parent

class PriorityQueue:
 def __init__(self):
 self.A = {}

 def insert(self, label, key):
 self.A[label] = key

 def extract_min(self):
 min_label = None
 for label in self.A:
 if (min_label is None) or (self.A[label] < self.A[min_label]):
 min_label = label
 del self.A[min_label]
 return min_label

 def decrease_key(self, label, key):
 if (label in self.A) and (key < self.A[label]):
 self.A[label] = key

class Item:
 def __init__(self, label, key):
 self.label, self.key = label, key

 def __lt__(self, other):
 return self.key < other.key

class PriorityQueue:
 def __init__(self):
 self.A = []
 self.label_2_idx = dict()

 def insert(self, label, key):
 item = Item(label, key)
 self.A.append(item)
 idx= len(self.A) - 1
 self.label_2_idx[label] = idx
 heapq._siftdown(self.A, 0, idx)

 def extract_min(self):
 label = self.A[0].label
 self.A[0], self.A[-1] = self.A[-1], self.A[0]
 self.label_2_idx[self.A[0].label] = 0
 self.label_2_idx.pop(self.A[-1].label)
 self.A.pop()
 if self.A: heapq._siftup(self.A, 0)

Correctness

Claim: At end of Dijkstra's algorithm for all

Proof:

If relaxation sets to , then at the end of the algorithm

Relaxation can only decrease estimates
Relaxation is safe, i.e., maintains that each is weight of a path to (or)

Suffices to show when vertex is removed from

Proof by induction on first vertices removed from

Base Case (= 1): is first vertex removed from , and

Inductive Step: Assume true for , consider th vertex removed from

Consider some shortest path from to , with

Let be the first edge in where is not among first (perhaps)

When was removed from , by induction, so:

So as desired

Running Time

Operation Time Occurrences in Dijkstra

Q.build(X) 1

Q.delete_min() |V|

Q.decrease_key(id, k) |E|

Count operations on changeable priority queue Q, assuming it contains n items:

Total running time is

Assume pruned graph to search only vertices reachable from the source, so

TBC

15 Recursive Algorithms
Notes

 return label

 def decrease_key(self, label, key):
 if label in self.label_2_idx:
 idx = self.label_2_idx[label]
 if self.A[idx].key < key:
 self.A[idx].key = key
 heapq._siftdown(self.A, 0, idx)

af://n2489
af://n2521
af://n2546
af://n2547
af://n2548

Class Graph

Brute Force Star

Decrease & Conquer Chain

Divide & Conquer Tree

Dynamic Programming DAG

Greedy / Incremental Subgraph

Design your own recursive algorith

Constant-sized program to solve arbitrary input
Need looping or recursion, analyze by induction
Recursive function call: vertex in a graph, directed edge from if calls
Dependency graph of recursive calls must be acyclic (if can terminate)
Classify based on shape of graph

Hard part is thinking inductively to construct recurrence on subproblems

How to solve a problem recursively (SRT BOT)

Subproblem definition
Relate subproblem solutions recursively
Topological order on subproblems (subproblem DAG)
Base cases of relation
Original problem solution via subproblems(s)
Time analysis

Merge Sort in SRT BOT Framework

Merge sorting an array of elements can be expressed in SRT BOT as follows:
Subproblems: sorted array on elements of for
Relation: where
Topological order: Increasing
Base cases:
Original:
Time:

Fibonacci Numbers

Compute the th Fibonacci number
Subproblems: the th Fibonacci number for
Relation: (definition of Fibonacci numbers)
Topological order: Increasing
Base cases:
Original problem:

Divide and conquer implies a tree of recursive calls
Time: exponential... :(
Subproblem computed more than once! (times)
Can we avoid this waste?

def fib(n):
 if n < 2: return n
 return fib(n-1) + fib(n-2)

af://n2549
af://n2598
af://n2614

Re-using Subproblem Solutions

Either:

Top down: record subproblem solutions in a memo and re-use
Bottom up: solve subproblems in topological sort order (usually via loops)

For Fibonacci, subproblems (vertices) and dependencies (edges)

Time to compute is then additions

A subtlety is that Fibonacci numbers grow to bits long, potentially word size
Each addition costs time
So total cost is time

Dynamic Programming

Weird name coined by Richard Bellman

Wanted government funding, needed cool name to disguise doing mathematics!
Updating (dynamic) a plan or schedule (program)

Existence of recursive solution implies decomposable subproblems

Recursive algorithm implies a graph of computation

Dynamic programming if subproblem dependencies overlap (DAG, in-degree > 1)

"Recurse but re-use" (Top down: record and lookup subproblem solutions)

"Careful brute force" (Bottom up: do each subproblem in order)

Often useful for counting/optimization problems: almost trivially correct recurrences

How to Solve a Problem Recursively (SRT BOT)

Subproblem definition subproblem

Describe the meaning of a subproblem in words, in terms of parameters
Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence
Often record partial state: add subproblems by incrementing some auxiliary variable

Relate subproblem solutions recursively for one or more

Topological order: to argue relation is acyclic and subproblems form a DAG

Base cases

State solutions for all (reachable) independent subproblems where relation breaks down
Original problem

Show how to compute solution to original problem from solutions to subproblem(s)
Possibly use parent pointers to recover actual solution, not just objective function

def fib(n):
 memo = dict()
 def F(i):
 if i < 2: return i
 if i not in memo:
 memo[i] = F(i-1) + F(i-2)
 return memo[i]
 return F(n)

def fib(n):
 F = dict()
 F[0], F[1] = 0, 1
 for i in range(2, n+1):
 F[i] = F[i-1] + F[i-2]
 return F[n]

af://n2638
af://n2659
af://n2680

Time analysis

 or if for all , then
 measures non-recursive work in relation; treat recursions as taking time

DAG Shortest Paths

DAG SSSP problem: given a DAG G and vertex , compute for all

Subproblems: for all

Relation:

Topological order: Topological order of G

Base case:

Original: All subproblem

Time:

DAG Relaxation computes the same min values as this dynamic program, just

step-by-step (if new value < min, update min via edge relaxation), and
from the perspective of and instead of and

How to Relate Subproblem Solutions

The general approach we're following to define a relation on subproblem solutions:

Identify a question about a subproblem solution that, if you knew the answer to, would reduce
to "smaller" subproblem(s)
Then locally brute-force the question by trying all possible answers, and taking the best
Alternatively, we can think of correctly guessing the answer to the question, and directly
recursing; but then we actually check all possible guesses, and return the "best"

The key for efficiency is for the question to have a small (polynomial) number of possible answers, so
brute forcing is not too expensive

Often (but not always) the non-recursive work to compute the relation is equal to the number of
answers we’re trying

16 Dynamic Programming Subproblems
Notes

Longest Common Subsequence (LCS)

Given two strings and , find a longest (not necessarily contiguous) subsequence of that is also
a subsequence of .
Example:
Solution: or or or , all length 5
Maximization problem on length of subsequence

1. Subproblems:

 length of the longest common subsequence of suffixes and
For and

2. Relate:

Either first characters match or they don't
If first characters match, some longest common subsequence will use them
(if no LCS uses first matched pair, using it will only improve solution)
(if an LCS uses first in but not first in , matching is also optimal)
If they do not match, they cannot both be in a longest common subsequence
Guess whether or is not in LCS

af://n2714
af://n2737
af://n2752
af://n2753
af://n2754

3. Topological order:

Subproblem depend only on strictly larger or or both
Simplest order to state: Decreasing
Nice order for bottom-up code: Decreasing , then decreasing

4. Base

 (one string is empty)
5. Original problem

Length of longest common subsequence of and is
Store parent pointers to reconstruct subsequencce
If the parent pointer increases both indices, add that character to LCS

6. Time:

subproblems:
work per subproblem:

 running time

Longest Increasing Subsequence (LIS)

Given a string , find a longest (not necessarily contiguous) subsequence of that strictly increases
(lexicographically).

Example:

Solution: of length 5

Maximization problem on length of subsequence

Attempted solution:

Natural subproblems are prefixes or suffixes of , say suffix
Natural question about LIS of : is in the LIS? (2 possible answers)
But then how do we recurse on and guarantee increasing subsequence?
Fix: add constraint to subproblems to give enough structure to achieve increasing property

1. Subproblems

 = length of longest increasing subsequence of suffix that includes
For

def lcs(A, B):
 a, b = len(A), len(B)
 x = [[0] * (b + 1) for _ in range(a + 1)]
 for i in reversed(range(a)):
 for j in reversed(range(b)):
 if A[i] == B[j]:
 x[i][j] = x[i + 1][j + 1] + 1
 else:
 x[i][j] = max(x[i + 1][j], x[i][j + 1])
 return x[0][0]

def lcs(A, B):
 a, b = len(A), len(B)
 x = [[0] * (b + 1) for _ in range(a + 1)]
 for i in range(1, a + 1):
 for j in range(1, b + 1):
 if A[i] == B[j]:
 x[i][j] = x[i - 1][j - 1] + 1
 else:
 x[i][j] = max(x[i - 1][j], x[i][j - 1])
 return x[0][0]

af://n2822

2. Relate

We're told that is in LIS (first element)

Next question: what is the second element of LIS?

Could be any where and (so increasing)
Or might be the last element of LIS

3. Topological order:

Decreasing
4. Base

No base case necessary, because we consider the possibility that is last
5. Original problem

What is the first element of LIS? Guess!
Length of LIS of is
Store parent pointers to reconstruct subsequence

6. Time

subproblems:
work per subproblem

 running time
speed up to by doing only work per subproblem, via AVL tree
augmentation

Alternating Coin Game

Given sequence of n coins of value
Two players (“me” and “you”) take turns
In a turn, take first or last coin among remaining coins
My goal is to maximize total value of my taken coins, where I go first
First solution exploits that this is a zero-sum game: I take all coins you don’t

1. Subproblems

Choose subproblems that correspond to the state of the game
For every contiguous subsequence of coins from to ,

 maximum total value I can take starting from coins of values
2. Relate

I must choose either coin or coin (Guess!)
Then it's your turn, so you'll get values or respectively
To figure out how much value I get, subtract this from total coin values

 ???
3. Topological order

Increasing
4. Base

5. Original problem

def lis(A):
 a = len(A)
 x = [1] * a
 for i in reversed(range(a)):
 for j in range(i, a):
 if A[j] > A[i]:
 x[i] = max(x[i], 1 + x[j])
 return max(x)

af://n2896

store parent pointers to reconstruct strategy
6. Time

subproblems:
work per subproblem: to compute sums

 running time
Speed up to time by pre-computing all sums in time via dynamic
programming

Second solution uses subproblem expansion: add subproblems for when you move next

1. Subproblems

Choose subproblems that correspond to the full state of the game
Contiguous subsequence of coins from to , and which player goes next

 maximum total value I can take when player starts from coins of
values

2. Relate

Player must choose either coin or coin (Guess!)
If me, then I get the value; otherwise, I get nothing
Then it’s the other player’s turn

3. Topological order

Increasing
4. Base

5. Original problem

Store parent pointers to reconstruct strategy
6. Time

subproblems:
work per subproblem:

 running time

Yet another alternative solution.

def coin_game(coins):
 n = len(coins)
 dp = [[0] * n for _ in range(n)]
 for i in reversed(range(n)):
 for j in range(i, n):
 if i == j:
 d[i][j] = coins[i]
 else:
 dp[i][j] = max(coins[i] - dp[i+1][j], coins[j] - dp[i][j-1])
 return dp[0][n-1] >= 0

def coin_game(coins):
 n = len(coins)
 dp = [[0] * n for _ in range(n)]
 parents = dict()

 for i in reversed(range(n)):
 for j in range(i, n):
 if i == j:

Subproblem Constraints and Expansion

We've now seen two examples of constraining or expanding subproblems
If you find yourself lacking information to check the desired conditions of the problem, or lack the
natural subproblem to recurse on, try subproblem constraint/expansion!
More subproblems and constraints give the relation more to work with, so can make DP more
feasible
Usually a trade-off between number of subproblems and branching/complexity of relation

17 Dynamic Programming III
Notes

Single-Source Shortest Paths Revisited

1. Subproblems

Expand subproblems to add information to make acyclic!
 weight of shortest path from to using at most edges

For and
2. Relate:

Guess last edge on shortest path from to

3. Topological order:

Increasing k: subproblems depend on subproblems only with strictly smaller .
4. base

 and for (no edges)
5. Original problem

If has finte shortest path, then
Otherwise some , so path contains a negative-weight cycle
Can keep track of parent pointers to subproblem that minimized recurrence

6. Time

subproblems:

Work for subproblem

 d[i][j] = coins[i]
 parents[(l, r)] = ((l, r), coins[l])
 else:
 a = coins[i] - dp[i+1][j]
 b = coins[j] - dp[i][j-1]
 if a > b:
 dp[i][j] = a
 parents[(l, r)] = ((l+1, r), nums[l])
 else:
 dp[i][j] = b
 parents[(l, r)] = ((l, r-1), nums[r])

 if dp[0][n-1] >= 0
 state = (0, n-1)
 turn = 1
 while parents[state][0] != state:
 print(f"player {turn % 2} took {parents[state][1]}")
 state = parents[state][0]
 turn += 1

 return dp[0][n-1] >= 0

af://n3013
af://n3023
af://n3024
af://n3025

This is just Bellman-Ford! (computed in a slightly different order)

All-Pairs Shortest Paths: Floyd-Warshall

Could define subproblem minimum weight of path from to using at most edges, as
in Bellman-Ford
Resulting running time is times Bellman-Ford, i.e.,
Know a better algorithm from L14: Johnson achieves
Can achieve running time (matching Johnson for dense graphs) with a simple dynamic
program, called Floyd-Warshall.
Number vertices so that

1. Subproblems:

 minimum weight of a path from to that only uses vertices from

For and
2. Relate

Only constant branching! No longer guessing previous vertex/edge

3. Topological order

Increasing : relation depends only on smaller
4. Base

 if
 if none of the above

5. Original problem

 for all
6. Time

 subproblems
Each work

 in total
Constant number of dependencies per subproblem brings the factor of in the running
time down to

af://n3073

	1 Introduction
	Notes
	More on Asymptotic Notation

	2 Data Structures
	Notes
	Data Structure Interfaces
	Sequence Interface (L02, L07)
	Set Interface (L03-L08)
	Array Sequence
	Linked List Sequence
	Dynamic Array Sequence
	Amortized Analysis
	Dynamic Array Deletion

	3 Sorting
	Notes
	Set Interface
	Sorting
	Permutation Sort

	Solving Recurrences
	Selection Sort
	Insertion Sort
	Merge Sort
	Master Theorem

	4 Hashing
	Notes
	Comparison Model
	Decision Tree
	Comparison Search Lower Bound
	Direct Access Array
	Hashing
	Chaining
	Hash Functions
	Division (bad): h(k) = k \ \mod \ m
	Universal (good, theoretically): h_{ab}{(k)}=(((ak+b) \mod \ p) \mod \ m)
	Dynamic

	5 Linear Sorting
	Notes
	Comparison Sort Lower Bound
	Direct Access Array Sort
	Tuple Sort
	Counting Sort
	Radix Sort

	6 Binary Trees, Part 1
	Notes
	How? Binary Trees!
	Terminology
	Tree Navigation
	Dynamic Operations
	Application: Set
	Application: Sequence

	7 Binary Tree II: AVL
	Notes
	Height Balance
	Rotations
	Rotations Suffice
	AVL Trees: Height Balance
	Computing Height
	Steps to Augment a Binary Tree
	Application: Sequence
	Conclusion
	Application: Sorting

	8 Binary Heaps
	Notes
	Priority Queue Interface
	Priority Queue Sort
	Priority Queue: Set AVL Tree
	Priority Queue: Array
	Priority Queue: Sorted Array
	Array as a Complete Binary Tree
	Implicit Complete Tree
	Binary Heaps
	Heap Insert
	Heap Delete Max
	Heap Sort
	In-place Priority Queue Sort
	Linear Build Heap
	Sequence AVL Tree Priority Queue
	Set vs. Multiset

	9 Breadth-First Search
	Notes
	Graph Applications
	Graph Definitions
	Neighbor Sets/Adjacencies
	Graph Representations
	Paths
	Graph Path Problems
	Shortest Paths Tree
	Breadth-First Search (BFS)

	10 Depth-First Search
	Notes
	Depth-First Search (DFS)
	Correctness
	Running Time
	Full-BFS and Full-DFS
	DFS Edge Classification
	Graph Connectivity
	Topological Sort
	Cycle Detection

	11 Weighted Shortest Paths
	Notes
	Weighted Graphs
	Weighted Paths
	Weighted Shortest Paths Algorithms
	Shortest-Paths Tree
	Relaxation
	DAG Relaxation
	Correctness
	Running Time

	12 Bellman-Ford
	Notes
	Simple Shortest Paths
	Negative Cycle Witness
	Bellman-Ford
	Running Time

	13 Dijkstra's Algorithm
	Notes
	Non-negative Edge Weights
	Dijkstra's Algorithm
	Correctness
	Running Time
	TBC

	15 Recursive Algorithms
	Notes
	Design your own recursive algorith
	Merge Sort in SRT BOT Framework
	Fibonacci Numbers
	Re-using Subproblem Solutions
	Dynamic Programming
	How to Solve a Problem Recursively (SRT BOT)
	DAG Shortest Paths
	How to Relate Subproblem Solutions

	16 Dynamic Programming Subproblems
	Notes
	Longest Common Subsequence (LCS)
	Longest Increasing Subsequence (LIS)
	Alternating Coin Game
	Subproblem Constraints and Expansion

	17 Dynamic Programming III
	Notes
	Single-Source Shortest Paths Revisited
	All-Pairs Shortest Paths: Floyd-Warshall

