1 Introduction

Notes

- Problem: binary relationship from inputs to outputs
- Algorithm: procedure mapping each input to a single output
- An algorithm solves a problem if it returns a correct output for each and every problem input
- Correctness:
- For small inputs: can use case analysis
- For arbitrarily large inputs: algorithm either is recursive or loop in some way. Use induction.
- Efficiency: how fast does an algorithm produce a correct output?
- Count the number of fixed time operations algorithm takes to return
- Asymptotic Notation: ignore constant factors and low order terms

input	constant	logarithmic	linear	log-linear	quadratic	polynomial	exponential
n	$\Theta(1)$	$\Theta(\log n)$	$\Theta(n)$	$\Theta(n \operatorname{logn})$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{c}\right)$	$2^{\Theta}\left(n^{c}\right)$
1000	1	≈ 10	1000	$\approx 10,000$	$1,000,000$	1000^{c}	$2^{1} 000 \approx 10^{3} 01$
Time	$1 n s$	$10 n s$	$1 \mu s$	$10 \mu s$	$1 m s$	$\left.10^{(} 3 c-9\right) s$	$10^{2} 81$ millenia

- Model of Computation: what operations on the machine can be performed in $O(1)$ time.
- Machine word: block of w bits (w is word size of a w-bit Word-RAM)
- Memory: Addressable sequence of machine words
- Processor supports many constant time operations on a $O(1)$ number of words (integers):
- integer arithmetic: (+, -, *, //, \%)
- logical operators: (\&\&, ||, !, ==, <, >, <=, =>)
- bitwise arithmetic: $(\&, \mid, \ll, \gg, \ldots)$
- Given word a, can read word at address a, write word to address a
- Data Structure : a way to store non-constant data, that supports a set of operations
- A collection of operations is called an interface
- Example:
- Sequence: Extrinsic order to items (first, last, nth)
- Set: Intrinsic order to items (queries based on item keys)
- Data structures may implement the same interface with different performance
- Example: Static Array - fixed width slots, fixed length, static sequence interface - StaticArray(n): allocate static array of size n initialized to 0 in $\Theta(n)$ time
- StaticArray.get_at(i): return word stored at array index in $\Theta(1)$ time
- StaticArray.set_at(i, x): write word x to array index in $\Theta(1)$ time

More on Asymptotic Notation

- O Notation:
- Non-negative function $g(n)$ is in $O(f(n))$ if and only if there exists a positive real number c and positive integer n_{0} such that $g(n) \leq c \cdot f(n)$ for all $n \geq n_{0}$.
- Ω Notation:
- Non-negative function $g(n)$ is in $\Omega(f(n))$ if and only if there exists a positive real number c and positive integer n_{0} such that $c \cdot f(n) \leq g(n)$ for all $n \geq n_{0}$.
- Θ Notation:
- Non-negative $g(n)$ is in $\Theta(f(n))$ if and only if $g(n) \in O(f(n)) \cap \Omega(f(n))$

2 Data Structures

Notes

Data Structure Interfaces

- A data structure is a way to store data, with algorithms that support operations on the data
- Collection of supported operations is called an interface (also API or ADT)
- Interface is a specification: what operations are supported (the problem!)
- Data structure is a representation: how operations are supported (the solution!)

Sequence Interface (L02, L07)

- Maintain a sequence of items (order is extrinsic)
- Ex: $\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}\right)$ (zero indexing)
- (use n to denote the number of items stored in the data structure)
- Supports sequence operations:

Type	Interface	Specification
Container	build(X)	given an iterable X, build sequence from items in X
	len()	return the number of stored items
Static	iter_seq()	return the stored items one-by-one in sequence order
	get_at(i)	return the $i^{\text {th }}$ item
	set_at(i, x)	replace the $i^{\text {th }}$ item with x
Dynamic	insert_at(i, x)	add x as the $i^{\text {th }}$ item
	delete_at(i, x)	remove and return the $i^{\text {th }}$ item
	insert_fist(x)	add x as the first item
	delete_first(x)	remove and return the first item
	insert_last(x)	add x as the last item
	delete_last(x)	remove and return the last item

- Special case interfaces:
- stack: insert_last(x) and delete_last()
- queue: insert_last(x) and delete_first()

Set Interface (L03-L08)

- Sequence about extrinsic order, set is about intrinsic order
- Maintain a set of items having unique keys (e.g., item x has key $x . k e y$)
- (Set or multi-set? We restrict to unique keys for now.)
- Often we let key of an item be the item itself, but may want to store more info than just key
- Supports set operations:

Type	Interface	Specification
Container	build(X)	given an iterable X , build sequence from items in X
	len()	return the number of stored items
Static	find(k)	return the stored item with key k
Dynamic	insert(x)	add x to set (replace item with key x.key if one already exist)
	delete(x)	remove and return the stored item with key k
Order	iter_ord()	return the stored items one-by-one in key order
	find_min()	return the stored item with smallest key
	find_max()	return the stored item with largest key
	find_next(k)	return the stored item with smallest key larger than k
	find_prev(k)	return the stored item with largest key smaller than k

- Special case interfaces:
- dictionary: set without the Order operations

Array Sequence

- Array is great for static operations! get at(i) and set at(i, x) in $\theta(1)$ time!
- But not so great at dynamic operations...
- (For consistency, we maintain the invariant that array is full)
- Then inserting and removing items requires:
- reallocating the array
- shifting all items after the modified item

Sequence Data Structure	API Type			Worst Case $O(\cdot)$	
Array	Container	Static	Dynamic		
API	build(x)	$\begin{aligned} & \text { get_at(i) } \\ & \text { set_at(i) } \end{aligned}$	```insert_first(x) delete_first()```	```insert_last(x) delete_last()```	```insert_at(i, x) delete_at(i)```
Array	n	1	n	n	n

Linked List Sequence

- Pointer data structure (this is not related to a Python "list")
- Each item stored in a node which contains a pointer to the next node in sequence
- Each node has two fields: node.item and node.next
- Can manipulate nodes simply by relinking pointers!
- Maintain pointers to the first node in sequence (called the head)
- Can now insert and delete from the front in $\Theta(1)$ time! Yay!
- (Inserting/deleting efficiently from back is also possible; you will do this in PS1)
- But now get_at(i) and set_at(i, x) each take $O(n)$ time... :(
- Can we get the best of both worlds? Yes! (Kind of...)

Sequence Data Structure	API Type			Worst Case $O(\cdot)$	
Array	Container	Static	Dynamic		
API	build(x)	get_at(i)			
set_at(i)	insert_first(x) delete_first()	insert_last(x) delete_last()	insert_at(i, x) delete_at(i)		
Linked List	n	n	1	n \# if we keep	track of tail

Dynamic Array Sequence

- Make an array efficient for last dynamic operations
- Python "list" is a dynamic array
- Idea! Allocate extra space so reallocation does not occur with every dynamic operation
- Fill ratio: $0 \leq r \leq 1$ the ratio of items to space
- Whenever array is full $(r=1)$, allocate $\Theta(n)$ extra space at end to fill ratio r_{i} (e.g., 1/2)
- Will have to insert $\Theta(n)$ items before the next reallocation
- A single operation can take $\Theta(n)$ time for reallocation
- However, any sequence of $\Theta(n)$ operations takes $\Theta(n)$ time
- So each operation takes $\Theta(1)$ time "on average"

Sequence Data Structure	API Type			Worst Case $O(\cdot)$	
Array	Container	Static	Dynamic		
API	build(x)	$\begin{aligned} & \text { get_at(i) } \\ & \text { set_at(i) } \end{aligned}$	```insert_first(x) delete_first()```	$\begin{aligned} & \text { insert_last(x) } \\ & \text { delete_last() } \end{aligned}$	```insert_at(i, x) delete_at(i)```
Dynamic Array	n	1	n	$1_{(a)}$	n

Amortized Analysis

- Data structure analysis technique to distribute cost over many operations
- Operation has amortized cost $T(n)$ if k operations cost at most $\leq k T(n)$
- " $T(n)$ amortized" roughly means $T(n)$ "on average" over many operations
- Inserting into a dynamic array takes $\Theta(1)$ amortized time

Dynamic Array Deletion

- Delete from back? $\Theta(1)$ time without effort, yay!
- However, can be very wasteful in space. Want size of data structure to stay $\Theta(n)$
- Attempt: if very empty, resize to $r=1$. Alternating insertion and deletion could be bad...
- Idea! When $r<r_{d}$, resize array to ratio r_{i} where $r_{d}<r_{i}$ (e.g., $r_{d}=1 / 4, r_{i}=1 / 2$)
- Then $\Theta(n)$ cheap operations must be made before next expensive resize
- Can limit extra space usage to $(1+\varepsilon) n$ for any $\varepsilon>0$ (set $r_{d}=\frac{1}{1+\epsilon}, r_{i}=\frac{r_{d}+1}{2}$)
- Dynamic arrays only support dynamic last operations in $\Theta(1)$ time
- Python List append and pop are amortized $O(1)$ time, other operations can be $O(n)$!
- (Inserting/deleting efficiently from front is also possible; you will do this in PS1)

Sequence Data Structure	API Type			Worst Case $O(\cdot)$	
Array	Container	Static	Dynamic		
API	build(x)	$\begin{aligned} & \text { get_at(i) } \\ & \text { set_at(i) } \end{aligned}$	```insert_first(x) delete_first()```	```insert_last(x) delete_last()```	```insert_at(i, x) delete_at(i)```
Static Array	n	1	n	n	n
Linked List	n	n	1	n \# 1 if we keep track of tail	n
Dynamic Array	n	1	n	$1_{(a)}$	n

3 Sorting

Notes

Set Interface

- Storing items in an array in arbitrary order can implement a (not so efficient) set
- Stored items sorted increasing by key allows:
- faster find min/max (at first and last index of array)
- faster finds via binary search: $O(\operatorname{logn})$

Set Data Structure	API Type			Worst Case $O(\cdot)$	
Set	Container	Static	Dynamic		
API	build(x)	find(k)	insert(k) delete(k)	find_min() find_max()	find_prev(k) find_next(k)
Array	n	n	n	n	n
Sorted Array	$n \operatorname{logn}$	logn	n	1	logn

- But how to construct a sorted array efficiently?

Sorting

- Given a sorted array, we can leverage binary search to make an efficient set data structure.
- Input: (static) array A of n numbers
- Output: (static) array B which is a sorted permutation of A
- Permutation: array with same elements in a different order
- Sorted: $\mathrm{B}[\mathrm{i}-1] \leq \mathrm{B}[\mathrm{i}]$ for all $i \in 1, \ldots, n$
- Example: $[8,2,4,9,3] \rightarrow[2,3,4,8,9]$
- A sort is destructive if it overwrites A (instead of making a new array B that is a sorted version of A)
- A sort is in place if it uses $O(1)$ extra space (implies destructive: in place \subseteq destructive)

Permutation Sort

- There are n ! permutations of A , at least one of which is sorted. (Due to duplications)
- For each permutation, check whether sorted in $\Theta(n)$
- Example: $[2,3,1] \rightarrow[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]$

```
def permutation_sort(A):
    """Sort A"""
    for B in permutations(A): # O(n!)
        if is_sorted(B): # O(n)
    return B
```

- permutation sort analysis:
- Correct by case analysis: try all possibilities (Brute Force)
- Running time: $\Omega(n!\cdot n)$ which is exponential :(

Solving Recurrences

- Substitution: Guess a solution, replace with representative function, recurrence holds true
- Recurrence Tree: Draw a tree representing the recursive calls and sum computation at nodes
- Master Theorem: A formula to solve many recurrences (R03)

Selection Sort

- Find a largest number in prefix A[:i + 1] and swap it to A[i]
- Recursively sort prefix A[:i]
- Example: $[8,2,4,9,3],[8,2,4,3,9],[3,2,4,8,9],[3,2,4,8,9],[2,3,4,8,9]$

```
def selection_sort(A, i=None):
    """Sort A[:i+1]"""
    if i is None: i = len(A) - 1
    if i > 0:
        j = prefix_max(A, i)
        A[i], A[j] = A[j], A[i]
        selection_sort(A, i - 1)
def prefix_max(A, i):
    """Return index of maximum in A[:i+1]"""
    if i > 0:
        j = prefix_max(A, i - 1)
        if A[i] < A[j]:
            return j
    return i
```

- prefix_max analysis:
- Base case: for i = 0, array has one element, so index of max is i
- Induction: assume correct for i, maximum is either the maximum of $\mathrm{A}[$:i] or $\mathrm{A}[\mathrm{i}]$, returns correct index in either case.
- $S(1)=\Theta(1) ; S(n)=S(n-1)+\Theta(1)$
- Substitution: $S(n)=\Theta(n), c n=\Theta(1)+c(n-1)=\Rightarrow 1=\Theta(1)$
- Recurrence tree: chain of n nodes with $\Theta(1)$ work per node, $\Sigma_{i=0}^{n-1} 1=\Theta(n)$

Insertion Sort

- Recursively sort prefix $A[: i]$
- Sort prefix A[:i + 1] assuming that prefix A[:i] is sorted by repeated swaps
- Example: $[8,2,4,9,3],[2,8,4,9,3],[2,4,8,9,3],[2,4,8,9,3],[2,3,4,8,9]$

```
def insertion_sort(A, i=None):
    """Sort A[:i+1]"""
    if i is None: i = len(A) - 1
    if i > 0
        insertion_sort(A, i-1)
        insert_last(A, i)
def insert_last(A, i):
    """Sort A[:i+1] assuming sorted A[:i]"""
    if i > 0 and A[i] < A[i-1]:
        A[i], A[i-1] = A[i-1], A[i]
        insert_last(A, i-1)
```

- insert_last analysis:
- Base case: for $i=0$, array has one element so is sorted
- Induction: assume correct for i, if $A[i]>=A[i-1]$, array is sorted; otherwise, swapping last two elements allows us to sort $\mathrm{A}[$:i] by induction.
- $S(1)=\Theta(1) ; S(n)=S(n-1)+\Theta(1)=\Rightarrow S(n)=\Theta(n)$
- insertion_sort analysis:
- Base case: for $i=0$, array has one element so is sorted
- Induction: assume correct for i, algorithm sorts A[:i] by induction, and then insert last correctly sorts the rest as proved above.
- $T(1)=\Theta(1) ; T(n)=T(n-1)+\Theta(n)=\Rightarrow T(n)=\Theta\left(n^{2}\right)$

Merge Sort

- Recursively sort first half and second half (may assume power of two)
- Merge sorted halves into one sorted list (two finger algorithm)
- Example: $[7,1,5,6,2,4,9,3],[1,7,5,6,2,4,3,9],[1,5,6,7,2,3,4,9],[1,2,3,4,5,6,7,9]$

```
def merge_sort(A, lo=0, hi=None)
    """Sort A[lo:hi]"""
    if hi is None: hi = len(A)
    if hi - lo > 1:
        mid = (lo + hi + 1) // 2
        merge_sort(A, lo, mid)
        merge_sort(A, mid, hi)
        left, right = A[lo:mid], A[mid:hi]
        merge(left, right, A, len(left), len(right), lo, hi)
def merge(left, right, A, i, j, lo, hi):
    """Merge sorted left[:i] anr right[:j] into A[lo:hi]"""
    if lo < hi:
        if (j <= 0) or (i > 0 and left[i-1] > right[j-1]):
            A[hi-1] = left[i-1]
            i -= 1
        else:
            A[hi-1] = right[j-1]
            j -= 1
        merge(left, right, A, i, j, lo, hi -1)
```

- merge analysis:
- Base case: for $n=0$, arrays are empty, so vacuously correct
- Induction: assume correct for n, item in $\mathrm{A}[r]$ must be a largest number from remaining prefixes of left and right, and since they are sorted, taking largest of last items suffices; remainder is merged by induction.
- $S(0)=\Theta(1) ; S(n)=S(n-1)+\Theta(1)=\Rightarrow S(n)=\Theta(n)$
- merge_sort analysis:
- Base case: for $n=1$, array has one element so is sorted
- Induction: assume correct for $k<n$, algorithm sorts smaller halves by induction, and then merge merges into a sorted array as proved above.
- $T(1)=\Theta(1) ; T(n)=2 T(n / 2)+\Theta(n)$
- Substitution: Guess $T(n)=\Theta(n \log n)$
$c n \log n=\Theta(n)+2 c(n / 2) \log (n / 2)=\Rightarrow c n \log (2)=\Theta(n)$
- Recurrence Tree: complete binary tree with depth $\log 2 n$ and n leaves, level i has 2^{i} nodes with $O\left(n / 2^{i}\right)$ work each, total: $\Sigma_{i=0}^{l o g_{2}^{n}}(2 i)\left(n / 2^{i}\right)=\Sigma_{i=0}^{\log _{2}^{n}} n=\Theta(n \log n)$

Master Theorem

- The Master Theorem provides a way to solve recurrence relations in which recursive calls decrease problem size by a constant factor.
- Given a recurrence relation of the form $T(n)=a T(n / b)+f(n)$ and $T(1)=\Theta(1)$, with branching factor $a \geq 1$, problem size reduction factor $b>1$, and asymptotically non-negative function $f(n)$, the Master Theorem gives the solution to the recurrence by comparing $f(n)$ to $a^{\log _{b}^{n}}=n^{\log _{b}^{a}}$, the number of leaves at the bottom of the recursion tree.
- When $f(n)$ grows asymptotically faster than n, the work done at each level decreases geometrically so the work at the root dominates;
- alternatively, when $f(n)$ grows slower, the work done at each level increases geometrically and the work at the leaves dominates.
- When their growth rates are comparable, the work is evenly spread over the tree's $O(\log n)$ levels.

case	solution	conditions
1	$T(n)=\Theta\left(n^{\log _{b}^{a}}\right)$	$f(n)=\Theta\left(n^{\log _{b}^{a-\epsilon}}\right)$ for some constant $\varepsilon>0$
2	$T(n)=\Theta\left(n^{\log _{b}^{a}} \log ^{k+1} n\right)$	$T(n)=\Theta\left(n^{\log _{b}^{a}} \log ^{k} n\right)$ for some constant $k \geq 0$
3	$T(n)=\Theta(f(n))$	$f(n)=\Theta\left(n^{\log _{b}^{a+\epsilon}}\right)$ for some constant $\varepsilon>0$ and $a f(n / b)<c f(n)$ for some constant $0<c<1$

- The Master Theorem takes on a simpler form when $f(n)$ is a polynomial, such that the recurrence has the from $T(n)=a T(n / b)+\Theta\left(n^{c}\right)$ for some constant $c \geq 0$.

case	solution	conditions	intuition
1	$T(n)=\Theta\left(n^{\log _{b}^{a}}\right)$	$c<l o g_{b}^{a}$	Work done at leaves dominates
2	$T(n)=\Theta\left(n^{c} l o g^{n}\right)$	$c=l o g_{b}^{a}$	Work balanced across the tree
3	$T(n)=\Theta\left(n^{c}\right)$	$c>\log _{b}^{a}$	Work done at root dominates

- This special case is straight-forward to prove by substitution (this can be done in recitation).
- To apply the Master Theorem (or this simpler special case), you should state which case applies, and show that your recurrence relation satisfies all conditions required by the relevant case.
- There are even stronger (more general) formulas to solve recurrences, but we will not use them in this class.

4 Hashing

Notes

Comparison Model

- In this model, assume algorithm can only differentiate items via comparisons
- Comparable items: black boxes only supporting comparisons between pairs
- Comparisons are $<, \leq,>, \geq,=, \neq$, outputs are binary: True or False
- Goal: Store a set of n comparable items, support find(k) operation
- Running time is lower bounded by \# comparisons performed, so count comparisons!

Decision Tree

- Any algorithm can be viewed as a decision tree of operations performed
- An internal node represents a binary comparison, branching either True or False
- For a comparison algorithm, the decision tree is binary (draw example)
- A leaf represents algorithm termination, resulting in an algorithm output
- A root-to-leaf path represents an execution of the algorithm on some input
- Need at least one leaf for each algorithm output, so search requires $\geq n+1$ leaves

Comparison Search Lower Bound

- What is worst-case running time of a comparison search algorithm?
- running time \geq \# comparisons \geq max length of any root-to-leaf path \geq height of tree
- What is minimum height of any binary tree on $\geq n$ nodes?
- Minimum height when binary tree is complete (all rows full except last)
- Height $\geq\lceil\lg (n+1)\rceil-1=\Omega(\log n)$, so running time of any comparison sort is $\Omega(\log n) \mathrm{S}$
- Sorted arrays achieve this bound! Yay!
- More generally, height of tree with $\Theta(n)$ leaves and max branching factor b is $\Omega(l o g b n)$
- To get faster, need an operation that allows super-constant $\omega(1)$ branching factor. How??

Direct Access Array

- Exploit Word-RAM $O(1)$ time random access indexing! Linear branching factor!
- Idea! Give item unique integer key k in $\{0, \ldots, u-1\}$, store item in an array at index k
- Associate a meaning with each index of array.
- If keys fit in a machine word, i.e. $u \leq 2^{w}$, worst-case $O(1)$ find/dynamic operations! Yay!
- 6.006: assume input numbers/strings fit in a word, unless length explicitly parameterized
- Anything in computer memory is a binary integer, or use (static) 64-bit address in memory
- But space $O(u)$, so really bad if $n \ll u \ldots$:(
- Example: if keys are ten-letter names, for one bit per name, requires $26^{10} \approx 17.6$ TB space
- How can we use less space?

Hashing

- Idea! If $n \ll u$, map keys to a smaller range $m=\Theta(n)$ and use smaller direct access array
- Hash function: $h(k):\{0, \ldots, u-1\} \rightarrow\{0, \ldots, m-1\}$ (also hash map)
- Direct access array called hash table, $h(k)$ called the hash of key k
- If $m \ll u$, no hash function is injective by pigeonhole principle
- Always exists keys a, b such that $h(a)=h(b) \rightarrow$ Collision! :(
- Can't store both items at same index, so where to store? Either:
- complicated analysis, but common and practical
- store in another data structure supporting dynamic set interface (chaining)

Chaining

- Idea! Store collisions in another data structure (a chain)
- If keys roughly evenly distributed over indices, chain size is $n / m=n / \Omega(n)=O(1)$!
- If chain has $O(1)$ size, all operations take $O(1)$ time! Yay!
- If not, many items may map to same location, e.g. $h(k)=$ constant, chain size is $\Theta(n):($
- Need good hash function! So what's a good hash function?

Hash Functions

Division (bad): $h(k)=k \bmod m$

- Heuristic, good when keys are uniformly distributed!
- m should avoid symmetries of the stored keys
- Large primes far from powers of 2 and 10 can be reasonable
- Python uses a version of this with some additional mixing
- If $u \ll n$, every hash function will have some input set that will a create $O(n)$ size chain
- Idea! Don't use a fixed hash function! Choose one randomly (but carefully)!

Universal (good, theoretically): $h_{a b}(k)=(((a k+b) \bmod p) \bmod m)$

- Hash Family $\mathcal{H}(p, m)=\left\{h_{a b} \mid a, b \in\{0, \ldots, p-1\}\right.$ and $\left.a \neq 0\right\}$
- Parameterized by a fixed prime $p>u$, with a and b chosen from range $\{0, \ldots, p-1\}$
- \mathcal{H} is a Universal family: $\operatorname{Pr}_{h \in \mathcal{H}}\left\{h\left(k_{i}\right)=h\left(k_{j}\right)\right\} \leq 1 / m \quad \forall k_{i} \neq k_{j} \in\{0, \ldots, u-1\}$
- Why is universality useful? Implies short chain lengths! (in expectation)
- $X_{i j}$ indicator random variable over $h \in \mathcal{H}: X_{i j}=1$ if $h\left(k_{i}\right)=h\left(k_{j}\right), X_{i j}=0$ otherwise
- Size of chain at index $h\left(k_{i}\right)$ is random variable $X_{i}=\Sigma_{j} X_{i j}$
- Expected size of chain at index $h\left(k_{i}\right)$:

$$
\begin{aligned}
\underset{h \in \mathcal{H}}{\mathbb{E}} X_{i}=\underset{h \in \mathcal{H}}{\mathbb{E}}\left\{\Sigma_{j} X_{i j}\right\}=\Sigma_{j} \underset{h \in \mathcal{H}}{\mathbb{E}} X_{i j} & =1+\Sigma_{j \neq i} \underset{h \in \mathcal{H}}{\mathbb{E}} X_{i j} \\
& =1+\Sigma_{j \neq i}(1) P r \in \mathcal{H}\left\{h\left(k_{i}\right)=h\left(k_{j}\right)\right\}+(0) \underset{h \in \mathcal{H}}{\operatorname{Pr}}\left\{h\left(k_{i}\right) \neq h\left(k_{j}\right)\right\} \\
& \leq 1+\Sigma_{j \neq i} 1 / m=1+(n-1) / m
\end{aligned}
$$

- Since $m=\Omega(n)$, load factor $\alpha=n / m=O(1)$, so $O(1)$ in expectation!

Dynamic

- If n / m far from 1 , rebuild with new randomly chosen hash function for new size m
- Same analysis as dynamic arrays, cost can be amortized over many dynamic operations
- So a hash table can implement dynamic set operations in expected amortized O(1) time! :)

Data Structure	API Type			Worst Case $O(\cdot)$	
Set	Container	Static	Dynamic		
API	build(x)	find(k)	insert(k) delete(k)	find_min() find_max()	find_prev(k) find_next(k)
Array	n	n	n	n	n
Sorted Array	$n l o g n$	logn	n	1	logn
Direct Access Array	u	1	1	u	n
Hash Table	n	1_{e}	$1_{(a)(e)}$	n	n

5 Linear Sorting

Notes

Comparison Sort Lower Bound

- Comparison model implies that algorithm decision tree is binary (constant branching factor)
- Requires \# leaves $L \geq$ \# possible outputs
- Tree height lower bounded by $\Omega(\log L)$, so worst-case running time is $\Omega(\log L)$
- To sort array of n elements, \# outputs is $n!$ permutations
- Thus height lower bounded by $\log (n!) \geq \log \left((n / 2)^{n / 2}\right)=\Omega(n \log n)$
- So merge sort is optimal in comparison model
- Can we exploit a direct access array to sort faster?

Direct Access Array Sort

- Example: $[5,2,7,0,4]$
- Suppose all keys are unique non-negative integers in range $\{0, \ldots, u-1\}$, so $n \leq u$
- Insert each item into a direct access array with size u in $\Theta(n)$
- Return items in order they appear in direct access array in $\Theta(u)$
- Running time is $\Theta(u)$, which is $\Theta(n)$ if $u=\Theta(n)$. Yay!

```
def direct_access_sort(A):
    """Sort A assuming items have distinct non-negative keys."""
    u = 1 + max([x.key for x in A])
    D = [None] * u
    for x in A:
        D[x.key] = x
    i = 0
    for key in range(u):
        if D[key] is not None:
            A[i] = D[key]
            i += 1
```

- What if keys are in larger range, like $u=\Omega\left(n^{2}\right)<n^{2}$?
- Idea! Represent each key k by tuple (a, b) where $k=a n+b$ and $0 \leq b<n$
- Specifically $a=\lfloor k / n\rfloor<n$ and $b=(k \bmod n)$ (just a 2-digit base-n number!)
- This is a built-in Python operation $(a, b)=\operatorname{divmod}(k, n)$
- Example: $[17,3,24,22,12] \Rightarrow[(3,2),(0,3),(4,4),(4,2),(2,2)] \Rightarrow[32,03,44,42,22]_{(n=5)}$
- How can we sort tuples?

Tuple Sort

- Item keys are tuples of equal length, i.e. item x. key $=\left(x . k_{1}, x . k_{2}, x . k_{3}, \ldots\right)$.
- Want to sort on all entries lexicographically, so first key k_{1} is most significant
- How to sort? Idea! Use other auxiliary sorting algorithms to separately sort each key
- (Like sorting rows in a spreadsheet by multiple columns)
- What order to sort them in? Least significant to most significant!
- Exercise: $[32,03,44,42,22] \Rightarrow[42,22,32,03,44] \Rightarrow[03,22,32,42,44]_{(n=5)}$
- Idea! Use tuple sort with auxiliary direct access array sort to sort tuples (a, b).
- Problem! Many integers could have the same a or b value, even if input keys distinct
- Need sort allowing repeated keys which preserves input order
- Want sort to be stable: repeated keys appear in output in same order as input
- Direct access array sort cannot even sort arrays having repeated keys!
- Can we modify direct access array sort to admit multiple keys in a way that is stable?

Counting Sort

- Instead of storing a single item at each array index, store a chain, just like hashing!
- For stability, chain data structure should remember the order in which items were added
- Use a sequence data structure which maintains insertion order
- To insert item x, insert_last to end of the chain at index x. key
- Then to sort, read through all chains in sequence order, returning items one by one

```
def counting_sort(A):
    """Sort A assuming items have non-negative keys."""
    u = 1 + max([x.key for x in A])
    D = [[] for i in range(u)]
    for x in A:
        D[x.key].append(x)
    i = 0
    for chain in D:
        for x in chain:
            A[i] = x
            i += 1
```


Radix Sort

- Idea! If $u<n^{2}$, use tuple sort with auxiliary counting sort to sort tuples (a, b)
- Sort least significant key b, then most significant key a
- Stability ensures previous sorts stay sorted
- Running time for this algorithm is $O(2 n)=O(n)$. Yay!
- If every key $<n^{c}$ for some positive $c=\log n(u)$, every key has at most c digits base n
- A c-digit number can be written as a c-element tuple in $O(c)$ time
- We sort each of the c base-n digits in $O(n)$ time
- So tuple sort with auxiliary counting sort runs in $O(c n)$ time in total
- If c is constant, so each key is $\leq n^{c}$, this sort is linear $O(n)$!

```
def radix_sort(A):
    """Sort A assuming items have non-negative keys"""
    n = len(A)
    u = 1 + max([x.key for x in A])
    c = 1 + (u.bit_length() // n.bit_length())
    class Obj: pass
    D = [Obj() for a in A]
    for i in range(n):
```

D[i].digits = []
D[i].item = A[i]
high = A[i].key
for j in range(c):
high, low = divmod(high, n)
$D[i]$.digits.append(low)
for i in range(c):
for j in range(n):
D[j].key = D[j].digits[i]
counting_sort(D)
for i in range(n);
$\mathrm{A}[\mathrm{i}]=\mathrm{D}[\mathrm{i}]$. .item

Algorithm	Time $O(\cdot)$	In-place?	Stable?	Comments
Insertion Sort	n^{2}	Y	Y	$O(n k)$ for k-proximate
Selection Sort	n^{2}	Y	N	$O(n)$ swaps
Merge Sort	$n \operatorname{logn}$	N	Y	stable, optimal comparison
Counting Sort	$n+u$	N	Y	$O(n)$ when $u=O(n)$
Radix Sort	$n+n \log _{n} u$	N	Y	$O(n)$ when $u=O(n)$

6 Binary Trees, Part 1

Notes

Sequence Data Structure	API Type			Worst Case $O(\cdot)$	
Array	Container	Static	Dynamic		
API	build(x)	get_at(i) set_at(i)	insert_first(x) delete_first()	insert_last(x) delete_last()	insert_at(i, x) delete_at(i)
Static Array	n	1	n	n	n
Linked List	n	n	1	n \# 1 if we keep track of tail	n
Dynamic Array	n	1	n	$1_{(a)}$	n
Goal	n	$\log n$	$\log n$	$\log n$	$\log n$
Set Data Structure	API Type			Worst Case $O(\cdot)$	
Set	Container	Static	Dynamic		
API	build(x)	find(k)	$\begin{aligned} & \text { insert(k) } \\ & \text { delete(k) } \end{aligned}$	$\begin{aligned} & \text { find_min() } \\ & \text { find_max() } \end{aligned}$	$\begin{aligned} & \text { find_prev(k) } \\ & \text { find_next(k) } \end{aligned}$
Array	n	n	n	n	n
Sorted Array	$n l o g n$	$\log n$	n	1	$\log n$
Goal	$n \operatorname{logn}$	logn	$\log n$	$l o g n$	logn

How? Binary Trees!

- Pointer-based data structures (like Linked List) can achieve worst-case performance
- Binary tree is pointer-based data structure with three pointers per node
- Node representation: node.\{item, parent, left, right\}
- Example:

-	<A>		<C>	<D>	<E>	<F>
item	A	B	C	D	E	F
parent	-	<A>	<A>			<D>
left		<C>		<F>	-	
right	<C>	<D>	-	-	-	

```
class TreeNode:
    def __init__(self, x):
        self.item = x
        self.left = None
        self.right = None
        self.parent = None
```


Terminology

- The root of a tree has no parent (Ex: <A>)
- leaf of a tree has no children (Ex: <C>, <E>, and <F>)
- Define depth($\langle X\rangle$) of node $\langle X\rangle$ in a tree rooted at $<A>$ to be length of path from <A> to $\langle X\rangle$
- Define height (<X>) of node <X> to be max depth of any node in the subtree rooted at <x>
- Idea: Design operations to run in $O(h)$ time for root height h, and maintain $h=O(\log n)$
- A binary tree has an inherent order: its traversal order (In-order traversal)
- every node in node <x> 's left subtree is before <x>
- every node in node <x>'s right subtree is after <x>

```
def subtree_iter(A):
    if A.left: yield from A.left.subtree_iter()
    yield A
    if A.right: yield from A.right.subtree_iter()
```

- List nodes in traversal order via a recursive algorithm starting at root:
- Recursively list left subtree, list self, then recursively list right subtree
- Runs in $O(n)$ time, since $O(1)$ work is done to list each node
- Example: Traversal order is (<F>, <D>, , <E>, <A>, <C>)
- Right now, traversal order has no meaning relative to the stored items
- Later, assign semantic meaning to traversal order to implement Sequence/Set interfaces

Tree Navigation

- Find first node in the traversal order of node <x> 's subtree (last is symmetric)
- Otherwise, $\langle x\rangle$ is the first node, so return it
- Running time is $O(h)$ where h is the height of the tree
- Example: first node in <A> 's subtree is <F>

```
def subtree_first(A):
    if A.left: return A.left.subtree_first()
    return A
def subtree_last(A):
    if A.right: return A.right.subtree_last()
    return A
```

- Find successor of node $\langle x\rangle$ in the traversal order (predecessor is symmetric)
- If $\langle x\rangle$ has right child, return first of right subtree
- Otherwise, return lowest ancestor of <x> for which <x> is in its left subtree
- Running time is $O(h)$ where h is the height of the tree
- Example: Successor of: is <E>, <E> is <A>, and <C> is None.

```
def successor(A):
    if A.right: return A.right.subtree_first()
    while A.parent and (A is A.parent.right):
        A = A.parent
    return A.parent
def predecessor(A):
    if A.left: return A.left.subtree_last()
    while A.parent and (A is A.parent.left):
        A = A.parent
    return A.parent
```


Dynamic Operations

- Change the tree by a single item (only add or remove leaves):
- add a node after another in the traversal order (before is symmetric)
- remove an item from the tree
- Insert node <Y> after <X> in the traversal order
- If <X> has no right child, make <Y> the right child of <X>
- Otherwise, make <Y> the left child of <X> 's successor (which cannot have a left child)
- Running time is $O(h)$ where h is the height of the tree
- Example: Insert node <G> before <E> in traversal order

- Example: Insert node $<\mathrm{H}\rangle$ after $\langle\mathrm{A}\rangle$ in traversal order


```
def subtree_insert_before(A, B):
    if A.left:
        A = A.left.subtree_last()
        A.right, B.parent = B, A
    else:
        A.left, B.parent = B, A
def subtree_insert_after(A, B):
    if A.right:
        A = A.right.subtree_first()
        A.left, B.parent = B, A
    else:
        A.right, B.parent = B, A
```

- Delete the item in node <x> from <x> 's subtree
- If $\langle x\rangle$ is a leaf, detach from parent and return
- Otherwise, <x> has a child
- If <X> has a left child, swap items with the predecessor of <x> and recurse
- Otherwise <x> has a right child, swap items with the successor of <x> and recurse
- Running time is $O(h)$ where h is the height of the tree
- Example: Remove $\langle\mathrm{F}\rangle$ (a leaf)

- Example: Remove $\langle\mathrm{A}\rangle$ (not a leaf, so first swap down to a leaf)


```
def subtree_delete(A):
    if A.left or A.right: # A is a leaf node
        if A.left: B = A.predecessor()
        else: B = A.successor()
        A.item, B.item = B.item, A.item
    if A.parent: # A is not a leaf node
        if A.parent.left is A: A.parent.left = None
        else: A.parent.right = None
    return A
```


Application: Set

- Idea! Set Binary Tree (a.k.a Binary Search Tree / BST)
- Traversal order(In-order) is sorted order increasing by key
- Equivalent to BST Property: for every node, every key in left subtree \leq node's key \leq every key in right subtree
- Then can find the node with key k in node $\langle x>$'s subtree in $O(h)$ time like binary search:
- If k is smaller than the key at $\langle X\rangle$, recurse in left subtree (or return None)
- If k is larger than the key at $\langle x\rangle$, recurse in right subtree (or return None)
- Otherwise, return the item stored at <x>
- Other Set operations follow a similar pattern

```
class BSTNode(TreeNode)
    def subtree_find(A, k):
        if k == A.item.key: return A
        if k < A.item.key and A.left: return A.left.subtree_find(k)
        if k > A.item.key and A.right: return A.right.subtree_find(k)
    def subtree_find_next(A, k):
        if A.item.key <= k:
        if A.right: return A.right.subtree_find_next(k)
        else: return None
    if A.item.key > k:
        if A.left:
                B = A.left.subtree_find_next(k)
                if B: return B
    return A
    def subtree_find_prev(A, k):
        if A.item.key >= k:
        if A.left: return A.left.subtree_find_prev(k)
        else: return None
    if A.item.key < k:
        if A.right:
                B = A.right.subtree_find_prev(k)
                if B: return B
    return A
    def subtree_insert(A, B):
        if B.item.key < A.item.key:
            if A.left: A.left.subtree_insert(B)
                else: A.subtree_insert_before(B)
    elif B.item.key > A.item.key:
                if A.right: A.right.subtree_insert(B)
                else: A.subtree_insert_after(B)
    else: A.item = B.item
class BinaryTree:
    def __init__(self, node_type=BinaryNode):
        self.root = None
        self.size = 0
        self.node_type = node_type
    def __len__(self): return self.size
    def __iter__(self):
        if self.root:
            for item in self.root.subtree_iter():
                yield node.item
class BinaryTreeSet(BinaryTree):
    def __init__(self):
        super().__init__(node_type=BSTNode)
    def iter_order(self): yield from self
    def build(self, X):
        for x in X: self.insert(x)
    def find_min(self):
        if self.root: return self.root.subtree_first().item
    def find_max(self):
        if self.root: return self.root_subtree_last().item
```

```
def find(self, k):
    if self.root:
        node = self.root.subtree_find(k)
        if node: return node.item
def find_next(self, k):
    if self.root:
        node = self.root.subtree_find_next(k)
        if node: return node.item
def find_prev(self, k):
    if self.root:
        node = self.root.subtree_find_prev(k)
        if node: return node.item
def insert(self, x):
    new_node = self.node_type(x)
    if self.root:
        self.root.subtree_insert(new_node)
        if new_node.parent is None: return False
    else:
        self.root = new_node
    self.size += 1
def delete(self, k):
    assert self.root
    node = self.root.subtree_find(k)
    assert node
    ext = node.subtree_delete()
    if ext.parent is None: self.root = None
    self.size -= 1
    return ext.item
```


Application: Sequence

- Idea! Sequence Binary Tree: Traversal order is sequence order
- How do we find $i^{t} h$ node in traversal order of a subtree? Call this operation subtree_at(i)
- Could just iterate through entire traversal order, but that's bad, $O(n)$
- However, if we could compute a subtree's size in $O(1)$, then can solve in $O(h)$ time
- How? Check the size n_{L} of the left subtree and compare to i
- If $i<n_{L}$, recurse on the left subtree
- If $i>n_{L}$, recurse on the right subtree with $i^{\prime}=i-n_{L}-1$
- Otherwise, $i=n_{L}$, and you've reached the desired node!
- Maintain the size of each node's subtree at the node via augmentation
- Add node.size field to each node
- When adding new leaf, add +1 to a.size for all ancestors a in $O(h)$ time
- When deleting a leaf, add -1 to a.size for all ancestors a in $O(h)$ time
- Sequence operations follow directly from a fast subtree_at(i) operation
- Naively, build (X) takes $O(n h)$ time, but can be done in $O(n)$ time; see recitation

7 Binary Tree II: AVL

Notes

Height Balance

- How to maintain height $h=O(\log n)$ where n is number of nodes in tree?
- A binary tree that maintains $O(\log n)$ height under dynamic operations is called balanced
- There are many balancing schemes (Red-Black Trees, Splay Trees, 2-3 Trees, ...)
- First proposed balancing scheme was the AVL Tree(Adelson-Velsky and Landis, 1962)

Rotations

- Need to reduce height of tree without changing its traversal order, so that we represent the same sequence of items.
- How to change the structure of a tree, while preserving traversal order? Rotations!


```
cotate_right (<D>)
```


- A rotation relinks $O(1)$ pointers to modify tree structure and maintains traversal order

```
def subtree_rotate_right(D):
    assert D.left
    B, E = D.left, D.right
    A, C = B.left, B.right
    # make sure new B has the right connection to D's parent
    D, B = B, D
    D.item, B.item = D.item, B.item
    B.left, B.right = A, D
    D.left, D.right = C, E
    if A: A.parent = B
    if E: E.parent = D
def subtree_rotate_left(B):
    assert B.right
    A, D = B.left, B.right
    C, E = D.left, D.right
    B, D = D, B
    B.item, D.item = D.item, B.item
    D.left, D.right = B, E
    B.left, B.right = A, C
    if A: A.parent = B
    if E: E.parent = D
```


Rotations Suffice

- Claim: $O(n)$ rotations can transform a binary tree to any other with same traversal order
- Proof: Repeatedly perform last possible right rotation in traversal order; resulting tree is a canonical chain. Each rotation increases depth of the last node by 1 . Depth of last node in final chain is $n-1$, so at most $n-1$ rotations are performed. Reverse canonical rotations to reach target tree. Q.E.D
- Can maintain height-balance by using $O(n)$ rotations to fully balance the tree, but slow :(
- We will keep the tree balanced in $O(\log n)$ time per operation!

AVL Trees: Height Balance

- AVL trees maintain height-balance (also called the AVL property)
- A node is height-balanced if heights of its left and right subtree differ by at most 1
- Let skew of a node be the height of its right subtree minus that of its left subtree
- Then a node is height-balanced if its skew is $-1,0$ or 1
- Claim: A binary tree with height-balanced nodes has height $h=O(\log n)$ (i.e., $n=2^{\Omega(h)}$)
- Proof: Suffices to show fewest nodes $F(h)$ in any height h tree is $F(h)=2^{\Omega(h)}$

$$
F(0)=1, F(1)=2, F(h)=1+F(h-1)+F(h-2) \geq 2 F(h-2)) \Longrightarrow F(h) \geq 2^{h / 2}
$$

- Suppose adding or removing leaf from a height-balanced tree results in imbalance
- Only subtree of the leaf's ancestors have changed in height or skew
- Heights changed by only ± 1, so skews still have magnitude ≤ 2
- Idea: Fix height-balance of ancestors starting from leaf up to the root
- Repeatedly rebalanced lowest ancestor that is not height-balanced, wlog assume skew 2
- Local Rebalance: Given binary tree node :
- whose skew 2 and
- every other node in $\langle B\rangle$ ' S subtree is height-balanced
- then 's subtree can be made height-balanced via one or two rotations
- (after which <B? 's height is the same or one less than before)
- Proof:
- Since skew of $$ is $2,$? 's right child exists
- Case 1: skew of <F> is 0 or Case 2: skew of <F> is 1
- Perform a left rotation on

TBC

Computing Height

- How to tell whether node is height-balanced? Compute heights of subtrees!
- How to compute the height of node <x> ? Naive algorithm:
- Recursively compute height of the left and right subtrees of <X>
- Add 1 to the max of the two heights
- Runs in $\Omega(n)$ time, since we recurse on every node :(
- Idea: Augment each node with the height of its subtree! (Save for later!)
- Height of <x> can be computed in $O(1)$ time from the heights of its children: - Look up the stored heights of left and right subtrees in $O(1)$ time - Add 1 to the max of the two heights
- During dynamic operations, we must maintain our augmentation as the tree changes shape
- Recompute subtree augmentations at every node whose subtree changes: - Update relinked nodes in a rotation operation in $O(1)$ time (ancestors don't change) - Update all ancestors of an inserted or deleted node in $O(h)$ time by walking up the tree

Steps to Augment a Binary Tree

- In general, to augment a binary tree with a subtree property P, you must:
- State the subtree property $P(\langle X\rangle)$ you want to store at each node $\langle X\rangle$
- Show how to compute $\mathrm{P}(\langle\mathrm{x}\rangle)$ from the augmentations of $\langle\mathrm{x}\rangle$'s children in $O(1)$ time
- Then stored property $\mathrm{P}(\langle\mathrm{X}\rangle)$ can be maintained without changing dynamic operation costs

Application: Sequence

- For sequence binary tree, we needed to know subtree sizes
- For just inserting/deleting a leaf, this was easy, but now need to handle rotations
- Subtree size is a subtree property, so can maintain via augmentation
- Can compute size from sizes of children by summing them and adding 1

Conclusion

- Set AVL trees achieve $O(\log n)$ time for all set operations
- except $O(n \log n)$ time for build and $O(n)$ time for iter
- Sequence AVL trees achieve $O(\log n)$ time for all sequence operations
- except $O(n)$ time for build and iter

Application: Sorting

- Any Set data structure defines a sorting algorithm: build (or repeatedly insert) then iter
- For example, Direct Access Array Sort from Lecture 5
- AVL Sort is a new $O(n \log n)$ time sorting algorithm

8 Binary Heaps

Notes

Priority Queue Interface

- Keep track of many items, quickly access/remove the most important
- Example: router with limited bandwidth, must prioritize certain kinds of messages
- Example: process scheduling in operating system kernels
- Example: discrete-event simulation (when is next occurring event?)
- Example: graph algorithms (later in the course)
- Order items by key = priority so Set interface (not Sequence interface)
- Optimized for a particular subset of Set operations:

Operation	Specification
build (X)	build priority queue from iterable X
insert (x)	add item x to data structure
delete_max()	remove and return stored item with largest key
find_max()	return stored item with largest key

- (Usually optimized for max or min, not both)
- Focus on insert and delete_max operations: build can repeatedly insert; find_max() can insert(delete_min())

```
class PriorityQueue:
    def __init__(self):
        self.A = []
    def insert(self, x):
        self.A.append(x)
    def delete_max(self):
```

```
assert len(self.A) > 0
```

return self.A.pop() \# not correct by it self.
@classmethod
def sort(PQ, A):
$p q=P Q()$
for x in $A: p q . i n s e r t(x)$
out $=$ [pq.delete_max() for _ in A]
return reversed(out)

Priority Queue Sort

- Any priority queue data structure translates into a sorting algorithm:
- build(A), e.g., insert items one by one in input order
- Repeatedly delete_min() (or delete_max()) to determine (reverse) sorted order
- All the hard work happens inside the data structure
- Running time is $T_{\text {build }}+n \cdot T_{\text {delete }_{m} a x} \leq n \cdot T_{\text {insert }}+n \cdot T_{\text {delete }_{m} a x}$
- Many sorting algorithms we've seen can be viewed as priority queue sort:

Priority Queue Data Structure		Operations $O(\cdot)$		Priority Queue Sort		Algorithm
	build(A)	insert(x)	delete_max()	Time	Inplace?	
Dynamic Array	n	$1_{(a)}$	n	n^{2}	Y	Selection Sort
Sorted Dynamic Array	$n \operatorname{logn}$	n	$1_{(a)}$	n^{2}	Y	Insertion Sort
Set AVL Tree	$n l o g n$	$\log n$	$\log n$	$n \log n$	N	AVL Sort
Goal	n	$\log n_{(a)}$	$\operatorname{logn}_{(a)}$	$n \operatorname{logn}$	Y	Heap Sort

Priority Queue: Set AVL Tree

- Set AVL trees support insert(x), find_min(), find_max(), delete_min(), and delete_max() in $O(\log n)$ time per operation
- So priority queue sort runs in $O(n \log n)$ time
- This is (essentially) AVL sort from Lecture 7
- Can speed up find_min() and find_max() to $O(1)$ time via subtree augmentation
- But this data structure is complicated and resulting sort is not in-place
- Is there a simpler data structure for just priority queue, and in-place $O(n \lg n)$ sort? YES, binary heap and heap sort
- Essentially implement a Set data structure on top of a Sequence data structure (array), using what we learned about binary trees

Priority Queue: Array

- Store elements in an unordered dynamic array
- insert (x): append x to end in amortized $O(1)$ time
- de lete_max () : find max in $O(n)$, swap max to the end an d remove
- insert is quick, but delete_max is slow
- Priority queue sort is selection sort! (plus some copying)

```
class PQArray(PriorityQueue):
    def delete_max(self): # O(n)
        n, A, m = len(self.A), self.A, 0
        for i in range(1, n):
            m = i if A[m].key < A[i].key else m
        A[m], A[n] = A[n], A[m]
        return super().delete_max() # pop from end
```

We use *args to allow insert to take one argument (as makes sense now) or zero arguments; we will need the latter functionality when making the priority queues in-place.

Priority Queue: Sorted Array

- Store elements in a sorted dynamic array
- insert (x) : append x to end, swap down to sorted position in $O(n)$ time
- delete_max () : delete from end in $O(1)$ amortized
- delete_max is quick, but insert is slow
- Priority queue sort is insertion sort! (plus some copying)
- Can we find a compromise between these two array priority queue extremes?

```
class PQSortedArray(PriorityQueue):
    def insert(self, x=None):
        if x is not None: super().insert(x)
        i, A = len(self.A) - 1, self.A
        while 0 < i and A[i+1].key < A[i].key:
            A[i+1], A[i] = A[i], A[i+1]
            i -= 1
```


Array as a Complete Binary Tree

- Idea: interpret an array as a complete binary tree, with maximum 2^{i} nodes at depth i except at the largest depth, where all nodes are left-aligned
- Equivalently, complete tree is filled densely in reading order: root to leaves, left to right
- Perspective: bijection between arrays and complete binary trees
- Height of complete tree perspective of array of n item is $\lceil\log n\rceil$, so balanced binary tree

Implicit Complete Tree

- Complete binary tree structure can be implicit instead of storing pointers
- Root is at index 0
- Compute neighbors by index arithmetic:

$$
\begin{aligned}
\operatorname{left}(i) & =2 i+1 \\
\operatorname{right}(i) & =2 i+2 \\
\operatorname{parent}(i) & =\left\lfloor\frac{i-1}{2}\right\rfloor
\end{aligned}
$$

Binary Heaps

- Idea: keep larger elements higher in tree, but only locally
- Max-Heap Property at node $i: Q[i] \geq Q[j]$ for $j \in\{\operatorname{left}(i), \operatorname{right}(i)\}$
- Max-heap is an array satisfying max-heap property at all nodes
- Claim: In a max-heap, every node i satisfies $Q[i] \geq Q[j]$ for all nodes j in subtree(i)
- Proof:
- Induction on $d=\operatorname{depth}(j)-\operatorname{depth}(i)$
- Base case: $d=0$ implies $i=j$ implies $Q[i] \geq Q[j]$ (in fact, equal)
- depth $(\operatorname{parent}(j))-\operatorname{depth}(i)=d-1<d$, so $Q[i] \geq Q[\operatorname{parent}(j)]$ by induction
- $Q[\operatorname{parent}(j)] \geq Q[j]$ by Max-Heap Property at parent(j)
- In particular, max item is at root of max-heap

```
def parent(i):
    p = (i - 1) // 2
    return p if 0 < i else i
def left(i, n):
    l = 2 * i + 1
    return l if l < n else i
def right(i, n):
    r = 2 * i + 2
    return r if r < n else i
```


Heap Insert

- Append new item x to end of array in $O(1)$ amortized, making it next leaf i in reading order
- max_heapify_up(i) : swap with parent until Max-Heap Property
- Check whether $Q[\operatorname{parent}(i)] \geq Q[i]$ (part of Max-Heap Property at parent(i))
- If not, swap items $Q[i]$ and $Q[$ parent $(i)]$, and recursively max_heapify_up(parent(i))
- Correctness:
- Max-Heap Property guarantees all nodes \geq descendants, except $Q[i]$ might be $>$ some of its ancestors (unless i is the root, so we're done)
- If swap is necessary, same guarantee is true with $Q[\operatorname{parent}(i)]$ instead of $Q[i]$
- Running time: height of tree, so $\Theta(\log n)$

Heap Delete Max

- Can only easily remote last element from dynamic array, but max key is in root of tree
- So swap item at root node $i=0$ with last item at node $n-1$ in heap array
- max_heapify_down(i) : swap root with larger child until Max-Heap Property
- Check whether $Q[i] \geq Q[j]$ for $j \in\{\operatorname{left}(i)$, $\operatorname{right}(i)\}$ (Max-Heap Property at i)
- If not, swap $Q[i]$ with $Q[j]$ for child $j \in\{\operatorname{left}(i), \operatorname{right}(i)\}$ with maximum key, and recursively max_heapify_down(j)
- Correctness:
- Max-Heap Property guarantees all nodes \geq descendants, except $Q[i]$ might be $<$ some descendants (unless i is a leaf, so we're done)
- If swap is necessary, same guarantee is true with $Q[j]$ instead of $Q[i]$
- Running time: height of tree, so $\Theta(\log n)$
class PQHeap(PriorityQueue):

```
    def insert(self, x=None):
    if x: super().insert(x)
    n, A = self.n, self.A
    max_heapify_up(A, n, n-1)
    def delete_max(self):
    n, A = self.n, self.A
    A[0], A[n] = A[n], A[0]
    max_heapify_down(A, n, 0)
    return super().delete_max()
def max_heapify_up(A, n, c):
    p = parent(c)
    if A[p].key < A[c].key:
        A[c], A[p] = A[p], A[c]
        max_heapify_up(A, n, p)
def max_heapify_down(A, n, p):
    l, r = left(p, n), right(p, n)
    c = l if A[r].key < A[l].key else r
    if A[p].key < A[c].key:
        A[c], A[p] = A[p], A[c]
        max_heapify_down(A, n, c)
```


Heap Sort

- Plugging max-heap into priority queue sort gives us a new sorting algorithm
- Running time is $O(n \log n)$ because each insert and delete_max takes $O(\log n)$
- But often include two improvements to this sorting algorithm:

In-place Priority Queue Sort

- Max-heap Q is a prefix of a larger array A, remember how many items $|Q|$ belong to heap
- $|Q|$ is initially zero, eventually $|A|$ (after inserts), then zero again (after deletes)
- insert () absorbs next item in array at index $|Q|$ into heap
- delete_max() moves max item to end, then abandons it by decrementing $|Q|$
- In-place priority queue sort with Array is exactly Selection Sort
- In-place priority queue sort with Sorted Array is exactly Insertion Sort
- In-place priority queue sort with binary Max Heap is Heap Sort

```
class PriorityQueue:
    def __init__(self, A):
        self.n, self.A = 0, A
    def insert(self):
        assert self.n < len(self.A)
        self.n += 1
    def delete_max(self):
        assert self.n >= 1
        self.n -= 1
    @classmethod
    def sort(Queue, A):
        pq = Queue(A)
        for i in range(len(A)): pq.insert()
        for i in range(len(A)): pq.delete_max()
        return pq.A
```


Linear Build Heap

- Inserting n items into heap call max_heapify_up(i) for i from 0 to $n-1$ (root down):

$$
\text { worst }- \text { case swaps } \approx \Sigma_{i=0}^{n-1} \operatorname{depth}(i)=\Sigma_{i=0}^{n-1} \log i=\log (n!) \geq(n / 2) \log (n / 2)=\Omega(n \log n)
$$

- Idea! Treat full array as a complete binary tree from start, then max_heapify_down(i) for ifrom $n-1$ to 0 (leaves up): worst - case swaps $\approx \Sigma_{i=0}^{n-1} h e i g h t ~(i)=\Sigma_{i=0}^{n-1}(\log n-\log i)=\log \left(\frac{n^{n}}{n!}\right)=\Theta\left(\log \left(\frac{n^{n}}{\sqrt{n}(n / e)^{n}}\right)\right)=O(n)$
- So can build heap in $O(n)$ time
- (Doesn't speed up $O(n \log n)$ performance of heap sort)

```
def build_max_heap(A):
    n = len(A)
    for i in range(n // 2, -1, -1):
        max_heapify_down(A, n, i)
```


Sequence AVL Tree Priority Queue

- Where else have we seen linear build time for an otherwise logarithmic data structure? Sequence AVL Tree!
- Store items of priority queue in Sequence AVL Tree in arbitrary order (insertion order)
- Maintain max (and/or min) augmentation:
- node. $\max =$ pointer to node in subtree of node with maximum key
- This is a subtree property, so constant factor overhead to maintain
- find_min() and find _max() in $O(1)$ time
- delete_min() and delete_max() in $O(\operatorname{logn})$ time
- build(A) in $O(n)$ time
- Same bounds as binary heaps (and more)

Set vs. Multiset

- While our Set interface assumes no duplicate keys, we can use these Sets to implement Multisets that allow items with duplicate keys:
- Each item in the Set is a Sequence (e.g., linked list) storing the Multiset items with the same key, which is the key of the Sequence
- In fact, without this reduction, binary heaps and AVL trees work directly for duplicate-key items (where e.g. delete_max deletes some item of maximum key), taking care to use \leq constraints (instead of < in Set AVL Trees)

9 Breadth-First Search

Notes

Graph Applications

- Why? Graphs are everywhere!
- any network system has direct connection to graphs
- e.g., road networks, computer networks, social networks
- the state space of any discrete system can be represented by a transition graph
- e.g., puzzle \& games like Chess, Tetris, Rubik's cube

Graph Definitions

- Graph $G=(V, E)$ is a set of vertices V and a set of pairs of vertices $E \subseteq V \times X$
- Directed edges are ordered pairs, e.g., (u, v) for $u, v \in V$
- Undirected edges are unordered pairs, u, v for $u, v \in V$ i.e., (u, v) and (v, u)
- In this class, we assume all graphs are simple:
- edges are distinct, e.g., (u, v) only occurs once in \mathbf{E} (though (v, u) may appear), and
- edges are pairs of distinct vertices, e.g., $u \neq v$ for all $(u, v) \in E$
- Simple implies $|E|=O\left(|V|^{2}\right)$, since $|E| \leq\left(\frac{|V|}{2}\right)$ for undirected, $\leq 2\left(\frac{|V|}{2}\right)$ for directed

Neighbor Sets/Adjacencies

- The outgoing neighbor set of $u \in V$ is $A d j^{+}(u)=\{v \in V \mid(u, v) \in E\}$
- The incoming neighbor set of $u \in V$ is $A d j^{-}(u)=\{v \in V \mid(v, u) \in E\}$
- The out-degree of a vertex $u \in V$ is $\operatorname{deg}^{+}(u)=\left|A d j^{+}(u)\right|$
- The in-degree of a vertex $u \in V$ is $\operatorname{deg}^{-}(u)=\left|\operatorname{Adj}^{-}(u)\right|$
- For undirected graphs, $A d j^{-}(u)=A d j^{+}(u)$ and $d e g^{-}(u)=\operatorname{deg}^{+}(u)$
- Dropping superscript defaults to outgoing, i.e., $\operatorname{Adj}(u)=A d j^{+}(u)$ and $\operatorname{deg}(u)=\operatorname{deg}^{+}(u)$

Graph Representations

- To store a graph $G=(V, E)$, we need to store the outgoing edges $\operatorname{Adj}(u)$ for all $u \in V$
- First, need a Set data structure $A d j$ to map u to $A d j(u)$
- Then for each u, need to store $A d j(u)$ in another data structure called an adjacency list
- Common to use direct access array or hash table for $A d j$, since want lookup fast by vertex
- Common to use array or linked list for each $\operatorname{Adj}(u)$ since usually only iteration is needed
- For the common representations, $A d j$ has size $\Theta(|V|)$, while each $\operatorname{Adj}(u)$ has size $\Theta(\operatorname{deg}(u))$
- Since $\Sigma_{u \in V} \operatorname{deg}(u) \leq 2|E|$ by handshaking lemma, graph storable in $\Theta(|V|+|E|)$ space
- Thus, for algorithms on graphs, linear time will mean $\Theta(|V|+|E|)$ (linear in size of graph)

Paths

- A path is a sequence of vertices $p=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ where $\left(v_{i}, v_{i+1}\right) \in E$ for all $1 \leq i<k$.
- A path is simple if it does not repeat vertices
- The length $l(p)$ of a path p is the number of edges in the path
- The distance $\delta(u, v)$ from $u \in V$ to $v \in V$ is the minimum length of any path from u to v

```
o i.e., the length of a shortest path from u}\mathrm{ to }
- (by convention, \(\delta(u, v)=\infty\) if \(u\) is not connected to \(v\) )
```


Graph Path Problems

- There are many problems you might want to solve concerning paths in a graph:
- SINGLE_PAIR_REACHABILITY(G, s, t):
is there a path in G from $s \in V$ to $t \in V$?
- SINGLE_PAIR_SHORTEST_PATH(G, s, t):
return distance $\delta(s, t)$, and a shortest path in $G=(V, E)$ from $s \in V$ to $t \in V$
- SINGLE_SOURCE_SHORTEST_PATHS(G, s):
return $\delta(s, v)$ for all $v \in V$, and a shortest-path tree containing a shortest path from s to every $v \in V$ (defined below)
- Each problem above is at least as hard as every problem above it
(i.e., you can use a black-box that solves a lower problem to solve any higher problem)
- We won't show algorithms to solve all of these problems
- Instead, show one algorithm that solves the hardest in $O(|V|+|E|)$ time!

Shortest Paths Tree

- How to return a shortest path from source vertex s for every vertex in graph?
- Many paths could have length $\Omega(|V|)$, so returning every path could require $\Omega\left(|V|^{2}\right)$ time
- Instead, for all $v \in V$, store its parent $P(v)$: second to last vertex on a shortest path from s
- Let $P(s)$ be null (no second to last vertex on shortest path from s to s)
- Set of parents comprise a shortestpathstree with $O(|V|)$ size!
(i.e., reversed shortest paths back to s from every vertex reachable from s)

Breadth-First Search (BFS)

- How to compute $\delta(s, v)$ and $P(v)$ for all $v \in V$?
- Store $\delta(s, v)$ and $P(v)$ in Set data structures mapping vertices v to distance and parent
- (If no path from s to v, do not store v in P and set $\delta(s, v)$ to ∞)
- Idea! Explore graph nodes in increasing order of distance
- Goal: Compute level sets $L_{i}=\{v \mid v \in \operatorname{Vandd}(s, v)=i\}$ (i.e., all vertices at distance i)
- Claim: Every vertex $v \in L_{i}$ must be adjacent to a vertex $u \in L_{i-1}$ (i.e., $v \in \operatorname{Adj}(u)$)
- Claim: No vertex that is in L_{j} for some $j<i$, appears in L_{i}
- Invariant: $\delta(s, v)$ and $P(v)$ have been computed correctly for all v in any L_{j} for $j<i$
- Base case $(i=1): L_{0}=s, \delta(s, s)=0, P(s)=$ None
- Inductive Step: To compute L_{i}
- for every vertex u in L_{i-1} :
- for every vertex $v \in A d j(u)$ that does not appear in any L_{j} for $j<i$:
- add v to L_{i}, set $\delta(s, v)=i$, and set $P(v)=u$
- Repeatedly compute L_{i} from L_{j} for $j<i$ for increasing i until L_{i} is the empty set
- Set $\delta(s, v)=\infty$ for any $v \in V$ for which $\delta(s, v)$ was not set
- Breadth-first search correctly computes all $\delta(s, v)$ and $P(v)$ by induction
- Running time analysis:
- Store each L_{i} in data structure with $\Theta\left(\left|L_{i}\right|\right)$ time iteration and $O(1)$ time insertion (i.e., in a dynamic array or linked list)
- Checking for a vertex v in any L_{j} for $j<i$ can be done by checking for v in P
- Maintain δ and P in Set data structures supporting dictionary ops in $O(1)$ time (i.e., direct access array or hash table)
- Algorithm adds each vertex u to ≤ 1 level and spends $O(1)$ time for each $v \in \operatorname{Adj}(u)$
- Work upper bounded by $O(1) \times \Sigma_{u \in V} \operatorname{deg}(u)=O(|E|)$ by handshake lemma
- Spend $\Theta(|V|)$ at end to assign $\delta(s, v)$ for vertices $v \in V$ not reachable from s So
- breadth-first search runs in linear time! $O(|V|+|E|)$

```
    levels = [[s]]
    while 0 < len(levels[-1]):
        level = []
        for u in levels[-1]:
            for v in adj[u]:
                if parent[v] is None:
                    parent[v] = u
                    level.append(v)
        levels.append(level)
    return parents
def unweighted_shortest_path(adj, s, t):
    parents = bfs(adj, s)
    if parent[t] is None: return None
    i = t
    path = [t]
    while i != s:
        i = parent[i]
        path.append(i)
    return reversed(path)
```


10 Depth-First Search

Notes

Depth-First Search (DFS)

- Searches a graph from a vertex s, similar to BFS
- Solves Single Source Reachability, not Single Source Shortest Paths. Useful for solving other problems (later)!
- Return (not necessarily shortest) parent tree of parent pointers back to s.
- Idea! Visit outgoing adjacencies recursively, but never revisit a vertex
- i.e., follow any path until you get stuck, backtrack until finding an unexplored path to explore
- $P(s)=$ None, then run $\operatorname{visit}(s)$, where
- visit(u)
- for every $v \in \operatorname{Adj}(u)$ that does not appear in P :
- set $P(v)=u$ and recursively call visit(v)
- (DFS finishes visiting vertex u, for use later!)

```
def dfs(adj, s, parent=None, order=None):
    if parent is None:
        parent = [None for v in adj]
        parent[s] = s
        order = []
    for v in adj[s]
        if parent[v] is None:
            parent[v] = s
            dfs(adj, v, parent, order)
    order.append(s)
    return parent, order
```


Correctness

- Claim: DFS visits v and correctly sets $P(v)$ for every vertex v reachable from s
- Proof: induct on k, for claim on only vertices within distance k from s
- Base case $(k=0): P(s)$ is set correctly for s and s is visited
- Inductive step: Consider vertex v with $\delta(s, v)=k^{\prime}+1$
- Consider vertex u, the second to last vertex on some shortest path from s to v
- By induction, since $\delta(s, u)=k^{\prime}$, DFS visits u and sets $P(u)$ correctly
- While visiting u, DFS considers $v \in A d j(u)$
- Either v is in P, so has already been visited, or v will be visited while visiting u
- In either case, v will be visited by DFS and will be added correctly to P

Running Time

- Algorithm visits each vertex u at most once and spends $O(1)$ time for each $v \in \operatorname{Adj}(u)$
- Work upper bounded by $O(1) \times \Sigma_{u \in V} \operatorname{deg}(u)=O(|E|)$
- Unlike BFS, not returning a distance for each vertex, so DFS runs in $O(|E|)$ time

Full-BFS and Full-DFS

- Suppose want to explore entire graph, not just vertices reachable from one vertex
- Idea! Repeat a graph search algorithm A on any unvisited vertex
- Repeat the following until all vertices have been visited:
- Choose an arbitrary unvisited vertex s, use A to explore all vertices reachable from s
- We call this algorithm Full-A, specifically Full-BFS or Full-DFS if A is BFS or DFS
- Visits every vertex once, so both Full-BFS and Full-DFS run in $O(|V|+|E|)$ time

```
def full_dfs(adj):
    parent = [None for v in adj]
    order = []
    for v in range(len(adj)):
        if parent[v] is None:
            parent[v] = v
            dfs(adj, v, parent, order)
    return parent, order
```


DFS Edge Classification

- Consider a graph edge from vertex u to v, we call the edge a tree edge if the edge is part of the DFS tree (i.e. parent $[v]=u$)
- Otherwise, the edge from u to v is not a tree edge, and is either:
- a back edge $-u$ is a descendant of v
- a forward edge $-v$ is a descendant of u
- a cross edge - neither are descendants of each other

Graph Connectivity

- An undirected graph is connected if there is a path connecting every pair of vertices
- In a directed graph, vertex u may be reachable from v, but v may not be reachable from u
- Connectivity is more complicated for directed graphs (we won't discuss in this class)
- Connectivity(G) : is undirected graph G connected?
- Connected_Components(G) : given undirected graph $G=(V, E)$, return partition of V into subsets $V_{i} \subseteq V$ (connected components) where each V_{i} is connected in G and there are no edges between vertices from different connected components
- Consider a graph algorithm A that solves Single Source Reachability
- Claim: A can be used to solve Connected Components
- Proof: Run Full- A. For each run of A, put visited vertices in a connected component

Topological Sort

- A Directed Acyclic Graph (DAG) is a directed graph that contains no directed cycle
- A Topological Order of a graph $G=(V, E)$ is an ordering f on the vertices such that: every $\operatorname{edge}(u, v) \in E$ satisfies $f(u)<f(v)$
- Exercise: Prove that a directed graph admits a topological ordering if and only if it is a DAG
- How to find a topological order?
- A Finishing Order is the order in which a Full-DFS finishes visiting each vertex in G
- Claim: If $G=(V, E)$ is a DAG, the reverse of a finishing order is a topological order
- Proof: Need to prove, for every edge $(u, v) \in E$ that u is ordered before v, i.e., the visit to v finishes before visiting u. Two cases:
- If u visited before v :
- Before visit to u finishes, will visit v (via (u, v) or otherwise)
- Thus the visit to v finishes before visiting u
- If v visited before u :
- u can't be reached from v since graph is acyclic
- Thus the visit to v finishes before visiting u

Cycle Detection

- Full-DFS will find a topological order if a graph $G=(V, E)$ is acyclic
- If reverse finishing order for Full-DFS is not a topological order, then G must contain a cycle
- Check if G is acyclic: for each edge (u, v), check if v is before u in reverse finishing order
- Can be done in $O(|E|)$ time via a hash table or direct access array
- To return such a cycle, maintain the set of ancestors along the path back to s in Full-DFS
- Claim: If G contains a cycle, Full-DFS will traverse an edge from v to an ancestor of v
- Proof: Consider a cycle $\left(v_{0}, v_{1}, \ldots, v_{k}, v_{0}\right)$ in G
- Without loss of generality, let v_{0} be the first vertex visited by Full-DFS on the cycle
- For each v_{i}, before visit to v_{i} finishes, will visit v_{i+1} and finish
- Will consider edge $\left(v_{i}, v_{i+1}\right)$, and if v_{i+1} has not been visited, it will be visited now
- Thus, before visit to v_{0} finishes, will visit v_{k} (for the first time, by v_{0} assumption)
- So, before visit to v_{k} finishes, will consider $\left(v_{k}, v_{0}\right)$, where v_{0} is an ancestor of v_{k}

11 Weighted Shortest Paths

Notes

Weighted Graphs

- A weighted graph is a graph $G=(V, E)$ together with a weight function $w: E \rightarrow Z$
- i.e., assign each edge $e=(u, v) \in E$ an integer weight: $w(e)=w(u, v)$
- Many applications for edge weights in a graph:

- distances in road network

- latency in network connections
- strength of a relationship in a social network
- Two common ways to represent weights computationlly:
- Inside graph representation: store edge weight with each vertex in adjacency lists
- Store separate Set data structure mapping each edge to its weight
- We assume a representation that allows querying the weight of an edge in $O(1)$ time
- Examples

Weighted Paths

- The weight $w(\pi)$ of a path π in a weighted graph is the sum of weights of edges in the path
- The (weighted) shortest path from $s \in V$ to $t \in V$ is path of minimum weight from s to t
- $\delta(s, t)=\inf \{w(\pi) \mid$ path π from s to $t\}$ is the shortest-path weight from s to t
- (Often use "distance" for shortest -path weight in weighted graphs, not number of edges)
- As with unweighted graphs:
- $\delta(s, t)=\inf$ if no path from s to t
- Subpaths of shortest paths are shortest paths (or else could splice in a shortest path)
- Why infimum not minimum? Possible that no finite-length minimum-weight path exists
- When? Can occur if there is a negative-weight cycle in the graph, Ex: (b, f, g, c, b) in $G 1$
- A negative-weight cycle is a path π starting and ending at same vertex $w(\pi)<0$
- $\delta(s, t)=-\infty$ if there is a path from s to t through a vertex on a negative-weight cycle
- If this occurs, don't want a shortest path, but may want the negative-weight cycle

Weighted Shortest Paths Algorithms

- Already know one algorithm: Breadth-First Search! Runs in $O(|V|+|E|)$ time when, e.g.:
- graph has positive weights, and all weights are the same
- graph has positive weights, and sum of all weights at most $O(|V|+|E|)$
- For general weighted graphs, we don't know how to solve SSSP in $O(|V|+|E|)$ time
- But if your graph is a Directed Acyclic Graph you can!

Restrictions		SSSP Algorithm		
Graph	Weights	Name	Running Time $O(\cdot)$	
General	Unweighted	BFS	$\|V\|+\|E\|$	
DAG	Any	DAG Relaxation	$\|V\|+\|E\|$	
General	Any	Bellman-Ford	$\|V\| \cdot\|E\|$	
General	Non-negative	Dijkstra	$\|V\| \log \|V\|+\|E\|$	

Shortest-Paths Tree

- For BFS, we kept track of parent pointers during search. Alternatively, compute them after!
- If know $\delta(s, v)$ for all vertices $v \in V$, can construct shortest-path tree in $O(|V|+|E|)$ time
- For weighted shortest paths from s, only need parent pointers for vertices v with finite $\delta(s, v)$
- Initialize empty P and set $P(s)=N o n e$
- For each vertex $u \in V$ where $\delta(s, u)$ is finite: - For each outgoing neighbor $v \in A d j^{+}(u)$:
- If $P(v)$ not assigned and $\delta(s, v)=\delta(s, u)+w(u, v)$
- There exits a shortest path through edge (u, v), so set $P(v)=u$
- Parent pointers may traverse cycles of zero weight. Mark each vertex in such a cycle.
- For each unmarked vertex $u \in V$ (including vertices later marked): - For each $v \in A d j^{+}(u)$ where v is marked and $\delta(s, v)=\delta(s, u)+w(u, v)$
- Unmark vertices in cycle containing v by traversing parent pointers from v
- Set $P(v)=u$, breaking the cycle

Relaxation

- A relaxation algorithm searches for a solution to an optimization problem by starting with a solution that is not optimal, then iteratively improves the solution until it becomes an optimal solution to the original problem.

```
def try_to_relax(adj, w, d, parent, u, v):
    if d[v] > d[u] + w(u, v):
        d[v] = d[u] + w(u, v)
        parent[v] = u
def general_relax(adj, w, s):
    d = [float('inf') for _ in adj]
    parent = [None for _ in adj]
    d[s], parent[s] = 0, s
    while some_edge_relaxable(adj, w, d):
        (u, v) = get_relaxable_edge(adj, w, d)
        try_to_relax(adj, w, d, parent, u, v)
    return d, parent
```


DAG Relaxation

- Idea! Maintain a distance estimate $d(s, v)$ (initially ∞) for each vertex $v \in V$, that always upper bounds true distance $\delta(s, v)$, then gradually lowers until $d(s, v)=\delta(s, v)$
- When do we lower? When an edge violates the triangle inequality!
- Triangle Inequality: the shortest-path weight from u to v cannot be greater than the shortest path from u to v through another vertex x, i.e., $\delta(u, v) \neq \delta(u, x)+\delta(x, v)$ for all $u, v, x \in V$
- If $d(s, v)>d(s, u)+w(u, v)$ for some edge u, v, then triangle inequality is violated :(
- Fix by lowering $d(s, v)$ to $d(s, u)+w(u, v)$, i.e., relax (u, v) to satisfy violated constraint
- Claim: Relaxation is safe: maintains that each $d(s, v)$ is weight of a path to v (or $\infty) \forall v \in V$
- Proof: Assume $d\left(s, v^{\prime}\right)$ is weight of a path (or ∞) for $\forall v^{\prime} \in V$. Relaxing some edge (u, v) sets $d(s, v)$ to $d(s, u)+w(u, v)$, which is the weight of a path from s to v through u
- Set $d(s, v)=\infty$ for all $v \in V$, then set $d(s, s)=0$
- Process each vertex u in a topological sort order of G :
- For each outgoing neighbor $v \in A d j^{+}(u)$:
- If $d(s, v)>d(s, u)+w(u, v)$
- relax edge (u, v), i.e., set $d(s, v)=d(s, u)+w(u, v)$

```
def DAGRelaxation(adj, w, s):
    _, order = dfs(adj, s)
    d = [float('inf') for _ in adj]
    parent = [None for _ in adj]
    d[s], parent[s] = 0, s
    for u in order:
        for v in adj[u]:
            try_to_relax(adj, w, d, parent, u, v)
    return d, parent
```


Correctness

- Claim: At end of DAG Relaxation: $d(s, v)=\delta(s, v)$ for all $v \in V$
- Proof: Induct on $k: d(s, v)=\delta(s, v)$ for all v in first k vertices in topological order
- Base case: Vertex s and every vertex before s in topological order satisfies claim at start
- Inductive Step: Assume claim holds for first k^{\prime} vertices, let v be the $\left(k^{\prime}+1\right)^{t h}$
- Consider a shortest path from s to v, and let u be the vertex preceding v on path
- u occurs before v in topological order, so $d(s, u)=\delta(s, u)$ by induction
- When processing $u, d(s, v)$ is set to be no larger than $\delta(s, u)+w(u, v)=\delta(s, v)$
- But $d(s, v) \geq \delta(s, v)$ since relaxation is safe, so $d(s, v)=\delta(s, v)$
- Alternatively:
- For any vertex v, DAG relaxation sets $d(s, v)=\min \left\{d(s, u)+w(u, v) \mid u \in d j^{-}(v)\right\}$
- Shortest path to v must pass through some incoming neighbor u of v
- So if $d(s, u)=\delta(s, u)$ for all $u \in A d j^{-}(v)$ by induction, then $d(s, v)=\delta(s, v)$

Running Time

- Initialization takes $O(|V|)$ time, and Topological Sort takes $O(|V|+|E|)$ time
- Additional work upper bounded by $O(1) \times \Sigma_{u \in V} \operatorname{deg}^{+}(u)=O(|E|)$
- Total running time is linear, $O(|V|+|E|)$

12 Bellman-Ford

Notes

Simple Shortest Paths

- If graph contains cycles and negative weights, might contain negative-weight cycles :(
- If graph does not contain negative-weight cycles, shortest paths are simple!
- Claim 1: If $\delta(s, v)$ is finite, there exists a shortest path to v that is simple
- Proof: By contradiction:
- Suppose no simple shortest path: let π be a shortest path with fewest vertices
- π not simple, so exists cycle C in π; C has non-negative weight (or else $\delta(s, v)=-\infty$)
- Removing C form π forms path π^{\prime} with fewest vertices and weight $w\left(\pi^{\prime}\right) \leq w(\pi)$
- Since simple paths cannot repeat vertices, finite shortest paths contain at most $|V|-1$ edges

Negative Cycle Witness

- k-Edge Distance $\delta_{k}(s, v)$: the minimum weight of any path from s to v using $\leq k$ edges
- Idea! Compute $\delta_{|V|-1}(s, v)$ and $\delta_{|V|}(s, v)$ for all $v \in V$
- If $\delta(s, v) \neq-\infty, \delta(s, v)=\delta_{|V|-1}(s, v)$, since a shortest path is simple (or nonexistent)
- If $\delta_{|V|}(s, v)<\delta_{|V|-1}(s, v)$
- there exists a shorter non-simple path to v, so $\delta_{|V|}(s, v)=-\infty$
- call v a (negative cycle) witness
- However, there may be vertices with $-\infty$ shortest-path weight that are not witness
- Claim 2: if $\delta(s, v)=-\infty$, then v is reachable from a witness
- Proof: Suffices to prove: every negative-weight cycle reachable from s contains a witness
- Consider a negative-weight cycle C reachable from s
- For $v \in C$, let $v^{\prime} \in C$ denote v^{\prime} s predecessor in C, where $\Sigma_{v \in C} w\left(v^{\prime}, v\right)<0$
- Then $\delta_{|V|}(s, v) \leq \delta_{|V|-1}\left(s, v^{\prime}\right)+w\left(v^{\prime}, v\right)$ (RHS weight of some path on $\leq|V|$ vertices)
- so $\Sigma_{v \in C} \delta_{|V|}(s, v) \leq \Sigma_{v \in C} \delta_{|V|-1}\left(s, v^{\prime}\right)+\Sigma_{v \in C} w\left(v^{\prime}, v\right)<\Sigma_{v \in C} \delta_{|V|-1}\left(s, v^{\prime}\right)$
- If C contains no witness, $\delta_{|V|}(s, v) \geq \delta_{|V|-1}(s, v)$ for all $v \in C$, a contradiction

Bellman-Ford

- Idea! Use graph duplication: make multiple copies (or levels) of the graph
- $|V|+1$ levels: vertex v_{k} in level k represents reaching vertex v from s using $\leq k$ edges
- If edges only increase in level, resulting graph is a DAG!
- Construct new DAG $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ from $G=(V, E)$
- G^{\prime} has $|V|(|V|+1)$ vertices v_{k} for all $v \in V$ and $k \in\{0, \ldots,|V|\}$
- G^{\prime} has $|V|(|V|+|E|)$ edges:
- $|V|$ edges $\left(v_{k-1}, v_{k}\right)$ for $k \in\{1, \ldots,|V|\}$ of weight zero for each $v \in V$
- $|V|$ edges $\left(u_{k-1}, v_{k}\right)$ for $k \in\{1, \ldots,|V|\}$ of weight $w(u, v)$ for each $(u, v) \in E$
- Run DAG Relaxation on G^{\prime} from s_{0} to compute $\delta\left(s_{0}, v_{k}\right)$ for all $v_{k} \in V^{\prime}$
- For each vertex: set $d(s, v)=\delta\left(s_{0}, v_{|v-1|}\right)$
- For each witness $u \in V$ where $\delta\left(s_{0}, u_{|V|}\right)<\delta\left(s_{0}, u_{|V|-1}\right)$
- For each vertex v reachable from u in G :
- set $d(s, v)=-\infty$

G

$$
\delta\left(a_{0}, v_{k}\right)
$$

$k \backslash v$	a	b	c	d
0	0	∞	∞	∞
1	0	-5	$\mathbf{6}$	∞
2	0	-5	$\mathbf{- 9}$	$\mathbf{9}$
3	0	-5	-9	$\mathbf{- 6}$
4	0	$-\mathbf{7}$	-9	-6
$\delta(a, v)$	0	$-\infty$	$-\infty$	$-\infty$

```
INF = float('inf')
def bellman_ford(adj, w, s):
    # initialization
    d = [INF for _ in adj]
    parent = [None for _ in adj]
    d[s], parent[s] = 0, s
    v = len(adj)
    # construct shortest paths in rounds
    for k in range(V-1):
        for u in range(v):
            for v in adj[u]:
                try_to_relax(adj, w, d, parent, u, v)
```

 \# check for negative weight cycles accessible from s
 for \(u\) in range(V):
 for \(v\) in \(\operatorname{adj}[u]:\)
 if \(d[v]>d[u]+w(u, v):\)
 raise Exception("found a negative weight in cycle!")
 return d, parent
 tBC

Running Time

- G^{\prime} has size $O(|V|(|V|+|E|))$ and can be constructed in as much time
- Running DAG Relaxation on G^{\prime} takes linear time in the size of G^{\prime}
- Does $O(1)$ work for each vertex reachable from a witness
- Finding reachability of a witness takes $O(|E|)$ time, with at most $O(|V|)$ witnesses: $O(|V||E|)$
- (Alternatively, connect super node x to witnesses via 0-weight edges, linear search from x)
- Pruning G at start to only subgraph reachable from s yields $O(|V||E|)$ time algorithm

13 Dijkstra's Algorithm

Notes

Non-negative Edge Weights

- Idea! Generalize BFS approach to weighted graphs:
- Grow a sphere centered at source s
- Repeatedly explore closer vertices before further ones
- But how to explore closer vertices if you don't know distances beforehand? :(
- Observation 1: If weights non-negative, monotonic distance increasing along shortest paths
- i.e., if vertex u appears on a shortest path from s to v, then $\delta(s, u) \leq \delta(s, v)$
- Let $V_{x} \subset V$ be the subset of vertices reachable within distance $\leq x$ from s
- If $v \in V_{x}$ then any shortest path from s to v only contains vertices from V_{x}
- Perhaps grow V_{x} one vertex at a time! (but growing for every x is slow if weights large)
- Observation 2: Can solve SSSP fast if given order of vertices in increasing distance from s
- Remove edges that go against this order (since cannot participate in shortest paths)
- May still have cycles if zero-weight edges: repeatedly collapse into single vertices
- Compute $\delta(s, v)$ for each $v \in V$ using DAG relaxation in $O(|V|+|E|)$ time

Dijkstra's Algorithm

- Idea! Relax edges from each vertex in increasing order of distance from source s
- Idea! Efficiently find next vertex in the order using a data structure
- Changeable Priority Queue Q on items with keys and unique IDs, supporting operations:

Operation	Specification
Q.build(X)	initialize Q with items in iterator X
Q.delete_min()	remove an item with minimum key
Q.decrease_key(id, k)	find stored item with ID id and change key to k

- Implement by cross-linking a Priority Queue Q^{\prime} and a Dictionary D mapping IDs into Q^{\prime}
- Assume vertex IDs are integers from 0 to $|V|-1$ so can use a direct access array for D
- For brevity, say item x is the tuple ($x . i d, x . k e y$)
- Set $d(s, v)=\infty$ for all $v \in V$, then set $d(s, s)=0$
- Build changeable priority queue Q with an item $(v, d(s, v))$ for each vertex $v \in V$
- For vertex v in outgoing adjacencies $A d j^{+}(u)$:
- If $d(s, v)>d(s, u)+w(u, v)$:
- Relax edge (u, v), i.e., set $d(s, v)=d(s, u)+w(u, v)$
- Decrease the key of v in Q to new estimate $d(s, v)$

Delete	$d(s, v)$				
v from Q	s	a	b	c	d
s	$\mathbf{0}$	∞	∞	∞	∞
c		10	∞	$\mathbf{3}$	∞
d		7	11		$\mathbf{5}$
a		$\mathbf{7}$	10		
b			$\mathbf{9}$		
$\delta(s, v)$	0	7	9	3	5


```
def dijkstra(adj, w, s):
    d = [INF for _ in adj]
    parent = [None for _ in adj]
    d[s], parent[s] = 0, s
    Q = PriorityQueue()
    V = len(adj)
    for v in range(V):
        Q.insert(v, d[v]) # label and key
    for _ in range(V):
        u = Q.extract_min() # get label for item with min key
        for v in adj[u]:
            try_to_relax(adj, w, d, parent, u, v)
            Q.decrease_key(v, d[v]) # alter key for given label
    return d, parent
class PriorityQueue:
    def __init__(self):
        self.A = {}
    def insert(self, label, key):
        self.A[label] = key
    def extract_min(self):
        min_label = None
        for label in self.A:
            if (min_label is None) or (self.A[label] < self.A[min_label]):
                min_label = label
        del self.A[min_label]
        return min_label
    def decrease_key(self, label, key):
        if (label in self.A) and (key < self.A[label]):
            self.A[label] = key
class Item:
    def __init__(self, label, key):
        self.label, self.key = label, key
    def __lt__(self, other):
        return self.key < other.key
class PriorityQueue:
    def __init__(self):
        self.A = []
        self.label_2_idx = dict()
    def insert(self, label, key):
        item = Item(label, key)
        self.A.append(item)
        idx= len(self.A) - 1
        self.label_2_idx[label] = idx
        heapq._siftdown(self.A, 0, idx)
    def extract_min(self):
        label = self.A[0].label
        self.A[0], self.A[-1] = self.A[-1], self.A[0]
        self.label_2_idx[self.A[0].label] = 0
        self.label_2_idx.pop(self.A[-1].label)
        self.A.pop()
        if self.A: heapq._siftup(self.A, 0)
```

```
    return label
def decrease_key(self, label, key):
    if label in self.label_2_idx:
        idx = self.label_2_idx[label]
        if self.A[idx].key < key:
            self.A[idx].key = key
            heapq._siftdown(self.A, 0, idx)
```


Correctness

- Claim: At end of Dijkstra's algorithm $d(s, v)=\delta(s, v)$ for all $v \in V$
- Proof:
- If relaxation sets $d(s, v)$ to $\delta(s, v)$, then $d(s, v)=\delta(s, v)$ at the end of the algorithm
- Relaxation can only decrease estimates $d(s, v)$
- Relaxation is safe, i.e., maintains that each $d(s, v)$ is weight of a path to $v($ or ∞)
- Suffices to show $d(s, v)=\delta(s, v)$ when vertex v is removed from Q
- Proof by induction on first k vertices removed from Q
- Base Case $(k=1): s$ is first vertex removed from Q, and $d(s, s)=0=\delta(s, s)$
- Inductive Step: Assume true for $k<k^{\prime}$, consider k^{\prime} th vertex v_{0} removed from Q
- Consider some shortest path π from s to v^{\prime}, with $w(\pi)=\delta\left(s, v^{\prime}\right)$
- Let (x, y) be the first edge in π where y is not among first $k^{\prime}-1$ (perhaps $y=v^{\prime}$)
- When x was removed from $Q, d(s, x)=\delta(s, x)$ by induction, so:

$$
\begin{aligned}
d(s, y) & \leq \delta(s, x)+w(x, y) \\
& =\delta(s, y) \\
& \leq \delta\left(s, v^{\prime}\right) \\
& \leq d\left(s, v^{\prime}\right) \\
& \leq d(s, y)
\end{aligned}
$$

- So $d\left(s, v^{\prime}\right)=\delta\left(s, v^{\prime}\right)$ as desired

Running Time

- Count operations on changeable priority queue Q, assuming it contains n items:

Operation	Time	Occurrences in Dijkstra
Q.build(X)	B_{n}	1
Q.delete_min()	M_{n}	$\|\mathrm{~V}\|$
Q.decrease_key(id, k)	D_{n}	$\|\mathrm{E}\|$

- Total running time is $O\left(B_{|V|}+|V| \cdot M_{|V|}+|E| \cdot D_{|V|}\right)$
- Assume pruned graph to search only vertices reachable from the source, so $|V|=O(|E|)$

TBC

15 Recursive Algorithms

Design your own recursive algorith

- Constant-sized program to solve arbitrary input
- Need looping or recursion, analyze by induction
- Recursive function call: vertex in a graph, directed edge from $A \rightarrow B$ if B calls A
- Dependency graph of recursive calls must be acyclic (if can terminate)
- Classify based on shape of graph

Class	Graph
Brute Force	Star
Decrease \& Conquer	Chain
Divide \& Conquer	Tree
Dynamic Programming	DAG
Greedy / Incremental	Subgraph

- Hard part is thinking inductively to construct recurrence on subproblems
- How to solve a problem recursively (SRT BOT)
- Subproblem definition
- Relate subproblem solutions recursively
- Topological order on subproblems (\Rightarrow subproblem DAG)
- Base cases of relation
- Original problem solution via subproblems(s)
- Time analysis

Merge Sort in SRT BOT Framework

- Merge sorting an array A of n elements can be expressed in SRT BOT as follows:
- Subproblems: $S(i, j)=$ sorted array on elements of $A[i: j]$ for $i \leq i \leq j \leq n$
- Relation: $S(i, j)=\operatorname{merge}(S(i, m), S(m, j))$ where $m=\lfloor(i+j) / 2\rfloor$
- Topological order: Increasing $j-i$
- Base cases: $S(i, i+1)=[A[i]]$
- Original: $S(0, n)$
- Time: $T(n)=2 T(n / 2)+O(n)=O(n \log n)$

Fibonacci Numbers

- Compute the nth Fibonacci number F_{n}
- Subproblems: $F(i)=$ the i th Fibonacci number F_{i} for $i \in\{0,1, \ldots, n\}$
- Relation: $F(i)=F(i-1)+F(i-2)$ (definition of Fibonacci numbers)
- Topological order: Increasing i
- Base cases: $F(0)=0, F(1)=1$
- Original problem: $F(n)$

```
def fib(n):
    if n < 2: return n
    return fib(n-1) + fib(n-2)
```

- Divide and conquer implies a tree of recursive calls
- Time: $T(n)=T(n-1)+T(n-2)+O(1)>2 T(n-2), T(n)=\Omega\left(2^{n / 2}\right)$ exponential... :(
- Subproblem $F(k)$ computed more than once! ($F(n-k)$ times)
- Can we avoid this waste?

Re-using Subproblem Solutions

- Either:
- Top down: record subproblem solutions in a memo and re-use
- Bottom up: solve subproblems in topological sort order (usually via loops)
- For Fibonacci, $n+1$ subproblems (vertices) and $<2 n$ dependencies (edges)
- Time to compute is then $O(n)$ additions

```
def fib(n):
    memo = dict()
    def F(i):
        if i < 2: return i
        if i not in memo:
                memo[i] = F(i-1) + F(i-2)
        return memo[i]
    return F(n)
def fib(n):
    F = dict()
    F[0], F[1] = 0, 1
    for i in range(2, n+1):
        F[i] = F[i-1] + F[i-2]
    return F[n]
```

- A subtlety is that Fibonacci numbers grow to $\Theta(n)$ bits long, potentially \gg word size w
- Each addition costs $O(\lceil n / w\rceil)$ time
- So total cost is $O(n\lceil n / w\rceil)=O\left(n+n^{2} / w\right)$ time

Dynamic Programming

- Weird name coined by Richard Bellman
- Wanted government funding, needed cool name to disguise doing mathematics!
- Updating (dynamic) a plan or schedule (program)
- Existence of recursive solution implies decomposable subproblems
- Recursive algorithm implies a graph of computation
- Dynamic programming if subproblem dependencies overlap (DAG, in-degree >1)
- "Recurse but re-use" (Top down: record and lookup subproblem solutions)
- "Careful brute force" (Bottom up: do each subproblem in order)
- Often useful for counting/optimization problems: almost trivially correct recurrences

How to Solve a Problem Recursively (SRT BOT)

- Subproblem definition subproblem $x \in X$
- Describe the meaning of a subproblem in words, in terms of parameters
- Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence
- Often record partial state: add subproblems by incrementing some auxiliary variable
- Relate subproblem solutions recursively $x(i)=f(x(j), \ldots)$ for one or more $j<i$
- Topological order: to argue relation is acyclic and subproblems form a DAG
- Base cases
- State solutions for all (reachable) independent subproblems where relation breaks down
- Original problem
- Show how to compute solution to original problem from solutions to subproblem(s)
- Possibly use parent pointers to recover actual solution, not just objective function
- Time analysis
- $\Sigma_{x \in X} \operatorname{work}(x)$, or if $\operatorname{work}(x)=O(W)$ for all $x \in X$, then $|X| \cdot O(W)$
- $\operatorname{work}(x)$ measures non-recursive work in relation; treat recursions as taking $O(1)$ time

DAG Shortest Paths

- DAG SSSP problem: given a DAG G and vertex s, compute $\delta(s, v)$ for all $v \in V$
- Subproblems: $\delta(s, v)$ for all $v \in V$
- Relation: $\delta(s, v)=\min \left\{\delta(s, u)+w(u, v) \mid u \in \operatorname{Adj} j^{-}(v)\right\} \cup\{\infty\}$
- Topological order: Topological order of G
- Base case: $\delta(s, s)=0$
- Original: All subproblem
- Time: $\Sigma_{v \in V} O\left(1+\left|A d j^{-}(v)\right|\right)=O(|V|+|E|)$
- DAG Relaxation computes the same min values as this dynamic program, just
- step-by-step (if new value < min, update min via edge relaxation), and
- from the perspective of u and $A d j^{+}(u)$ instead of v and $A d j^{-}(v)$

How to Relate Subproblem Solutions

- The general approach we're following to define a relation on subproblem solutions:
- Identify a question about a subproblem solution that, if you knew the answer to, would reduce to "smaller" subproblem(s)
- Then locally brute-force the question by trying all possible answers, and taking the best
- Alternatively, we can think of correctly guessing the answer to the question, and directly recursing; but then we actually check all possible guesses, and return the "best"
- The key for efficiency is for the question to have a small (polynomial) number of possible answers, so brute forcing is not too expensive
- Often (but not always) the non-recursive work to compute the relation is equal to the number of answers we're trying

16 Dynamic Programming Subproblems

Notes

Longest Common Subsequence (LCS)

- Given two strings A and B, find a longest (not necessarily contiguous) subsequence of A that is also a subsequence of B.
- Example: $A=$ hieroglyphology $B=$ michaelangelo
- Solution: hello or heglo or iello or ieglo, all length 5
- Maximization problem on length of subsequence

1. Subproblems:

- $x(i, j)=$ length of the longest common subsequence of suffixes $A[i:]$ and $B[j:]$
- For $0 \leq i \leq|A|$ and $0 \leq j \leq|B|$

2. Relate:

- Either first characters match or they don't
- If first characters match, some longest common subsequence will use them
- (if no LCS uses first matched pair, using it will only improve solution)
- (if an LCS uses first in $A[i]$ but not first in $B[j]$, matching $B[j]$ is also optimal)
- If they do not match, they cannot both be in a longest common subsequence
- Guess whether $A[i]$ or $B[j]$ is not in LCS
- $x(i, j)=\left\{\begin{array}{l}x(i+1, j+1)+1 \quad \text { if } A[i]=B[j] \\ \max \{x(i+1, j), x(i, j+1)\} \quad \text { otherwise }\end{array}\right.$

3. Topological order:

- Subproblem $x(i, j)$ depend only on strictly larger i or j or both
- Simplest order to state: Decreasing $i+j$
- Nice order for bottom-up code: Decreasing i, then decreasing j

4. Base

- $x(i,|B|)=x(|A|, j)=0$ (one string is empty)

5. Original problem

- Length of longest common subsequence of A and B is $x(0,0)$
- Store parent pointers to reconstruct subsequencce
- If the parent pointer increases both indices, add that character to LCS

6. Time:

- \# subproblems: $(|A|+1) \cdot(|B|+1)$
- work per subproblem: $O(1)$
- $O(|A| \cdot|B|)$ running time

```
def lcs(A, B):
    a, b = len(A), len(B)
    x = [[0] * (b + 1) for _ in range(a + 1)]
    for i in reversed(range(a)):
        for j in reversed(range(b)):
            if A[i] == B[j]:
                x[i][j] = x[i + 1][j + 1] + 1
            else:
            x[i][j] = max(x[i + 1][j], x[i][j + 1])
    return x[0][0]
def lcs(A, B):
    a, b = len(A), len(B)
    x = [[0] * (b + 1) for _ in range(a + 1)]
    for i in range(1, a + 1):
        for j in range(1, b + 1):
            if A[i] == B[j]:
                x[i][j] = x[i - 1][j - 1] + 1
        else:
            x[i][j] = max(x[i - 1][j], x[i][j - 1])
    return x[0][0]
```


Longest Increasing Subsequence (LIS)

- Given a string A, find a longest (not necessarily contiguous) subsequence of A that strictly increases (lexicographically).
- Example: $A=$ carbohydrate
- Solution: abort of length 5
- Maximization problem on length of subsequence
- Attempted solution:
- Natural subproblems are prefixes or suffixes of A, say suffix $A[i$:]
- Natural question about LIS of $A[i:]$: is $A[i]$ in the LIS? (2 possible answers)
- But then how do we recurse on $A[i+1:]$ and guarantee increasing subsequence?
- Fix: add constraint to subproblems to give enough structure to achieve increasing property

1. Subproblems

- $x(i)=$ length of longest increasing subsequence of suffix $A[i:]$ that includes $A[i]$
- For $0 \leq i \leq|A|$

2. Relate

- We're told that $A[i]$ is in LIS (first element)
- Next question: what is the second element of LIS?
- Could be any $A[j]$ where $j>i$ and $A[j]>A[i]$ (so increasing)
- Or $A[i]$ might be the last element of LIS
- $x(i)=\max \{1+x(j)|i<j<|A|, A[j]>A[i]\} \cup\{1\}$

3. Topological order:

- Decreasing i

4. Base

- No base case necessary, because we consider the possibility that $A[i]$ is last

5. Original problem

- What is the first element of LIS? Guess!
- Length of LIS of A is $\max \{x(i)|0 \leq i<|A|\}$
- Store parent pointers to reconstruct subsequence

6. Time

- \# subproblems: $|A|$
- work per subproblem $O(|A|)$
- $O\left(|A|^{2}\right)$ running time
- speed up to $O(|A| \log |A|)$ by doing only $O(\log |A|)$ work per subproblem, via AVL tree augmentation

```
def lis(A):
    a}=\operatorname{len}(\textrm{A}
    x = [1] * a
    for i in reversed(range(a)):
        for j in range(i, a):
            if A[j] > A[i]:
                x[i] = max(x[i], 1 + x[j])
    return max(x)
```


Alternating Coin Game

- Given sequence of n coins of value $v_{0}, v_{1}, \ldots, v_{n 1}$
- Two players ("me" and "you") take turns
- In a turn, take first or last coin among remaining coins
- My goal is to maximize total value of my taken coins, where I go first
- First solution exploits that this is a zero-sum game: I take all coins you don't

1. Subproblems

- Choose subproblems that correspond to the state of the game
- For every contiguous subsequence of coins from i to $j, 0 \leq i \leq j<n$
- $x(i, j)=$ maximum total value I can take starting from coins of values v_{i}, \ldots, v_{j}

2. Relate

- I must choose either coin i or coin j (Guess!)
- Then it's your turn, so you'll get values $x(i+1, j)$ or $x(i, j-1)$ respectively
- To figure out how much value I get, subtract this from total coin values
- $x(i, j)=\max \left\{v_{i}+\Sigma_{k=i+1}^{j} v_{k} \quad x(i+1, j), v_{j}+\Sigma_{k=i}^{j} v_{k} \quad x(i, j-1)\right\}$???

3. Topological order
```
- Increasing j-i
```

4. Base

- $x(i, i)=v_{i}$

5. Original problem

- $x(0, n-1)$
- store parent pointers to reconstruct strategy

6. Time

- \# subproblems: $\Theta\left(n^{2}\right)$
- work per subproblem: $\Theta(n)$ to compute sums
- $\Theta\left(n^{3}\right)$ running time
- Speed up to $\Theta\left(n^{2}\right)$ time by pre-computing all sums $\Sigma_{k=i}^{j} v_{k}$ in $\Theta\left(n^{2}\right)$ time via dynamic programming
- Second solution uses subproblem expansion: add subproblems for when you move next

1. Subproblems

- Choose subproblems that correspond to the full state of the game
- Contiguous subsequence of coins from i to j, and which player p goes next
- $x(i, j, p)=$ maximum total value I can take when player $p \in\{m e, y o u\}$ starts from coins of values v_{i}, \ldots, v_{j}

2. Relate

- Player p must choose either coin i or coin j (Guess!)
- If $p=\mathrm{me}$, then I get the value; otherwise, I get nothing
- Then it's the other player's turn
- $x(i, j$, me $)=\max \left\{v_{i}+x(i+1, j\right.$, you $), v_{j}+x(i, j-1$, you $\left.)\right\}$
- $x(i, j, y o u)=\min \{x(i+1, j, m e), x(i, j-1, m e)\}$

3. Topological order

- Increasing $j-i$

4. Base

- $x(i, i, m e)=v_{i}$
- $x(i, i, y o u)=0$

5. Original problem

- $x(0, n-1, m e)$
- Store parent pointers to reconstruct strategy

6. Time

- \# subproblems: $\Theta\left(n^{2}\right)$
- work per subproblem: $\Theta(1)$
- $\Theta\left(n^{2}\right)$ running time

Yet another alternative solution.

```
def coin_game(coins):
    n = len(coins)
    dp = [[0] * n for _ in range(n)]
    for i in reversed(range(n)):
        for j in range(i, n):
            if i == j:
                d[i][j] = coins[i]
            else:
                dp[i][j] = max(coins[i] - dp[i+1][j], coins[j] - dp[i][j-1])
    return dp[0][n-1] >= 0
def coin_game(coins):
    n = len(coins)
    dp = [[0] * n for _ in range(n)]
    parents = dict()
    for i in reversed(range(n)):
        for j in range(i, n):
            if i == j:
```

```
    d[i][j] = coins[i]
    parents[(l, r)] = ((l, r), coins[l])
        else:
            a = coins[i] - dp[i+1][j]
            b = coins[j] - dp[i][j-1]
            if a > b:
                    dp[i][j] = a
                    parents[(l, r)] = ((l+1, r), nums[l])
            else:
            dp[i][j] = b
            parents[(l, r)] = ((l, r-1), nums[r])
if dp[0][n-1] >= 0
    state = (0, n-1)
    turn = 1
    while parents[state][0] != state:
        print(f"player {turn % 2} took {parents[state][1]}")
        state = parents[state][0]
        turn += 1
return dp[0][n-1] >= 0
```


Subproblem Constraints and Expansion

- We've now seen two examples of constraining or expanding subproblems
- If you find yourself lacking information to check the desired conditions of the problem, or lack the natural subproblem to recurse on, try subproblem constraint/expansion!
- More subproblems and constraints give the relation more to work with, so can make DP more feasible
- Usually a trade-off between number of subproblems and branching/complexity of relation

17 Dynamic Programming III

Notes

Single-Source Shortest Paths Revisited

1. Subproblems

- Expand subproblems to add information to make acyclic!
- $\delta_{k}(s, v)=$ weight of shortest path from s to v using at most k edges
- For $v \in V$ and $0 \leq k \leq|V|$

2. Relate:

- Guess last edge (u, v) on shortest path from s to v
- $\delta_{k}(s, v)=\min \left\{\delta_{k-1}(s, u)+w(u, v) \mid(u, v) \in E\right\} \cup\left\{\delta_{k-1}(s, v)\right\}$

3. Topological order:

- Increasing k: subproblems depend on subproblems only with strictly smaller k.

4. base

- $\delta_{0}(s, s)=0$ and $\delta_{0}(s, v)=\infty$ for $v \neq s$ (no edges)

5. Original problem

- If has finte shortest path, then $\delta(s, v)=\delta_{|V|-1}(s, v)$
- Otherwise some $\delta_{|V|}(s, v)<\delta_{|V|-1}(s, v)$, so path contains a negative-weight cycle
- Can keep track of parent pointers to subproblem that minimized recurrence

6. Time

- \# subproblems: $|V| \times(|V|+1)$
- Work for subproblem $\delta_{k}(s, v): O\left(\operatorname{deg} g_{i n}(v)\right)$

$$
\Sigma_{k=0}^{|V|} \Sigma_{v \in V} O\left(d e g_{i n}(v)\right)=\Sigma_{k=0}^{|V|} O(|E|)=O(|V| \cdot|E|)
$$

- This is just Bellman-Ford! (computed in a slightly different order)

All-Pairs Shortest Paths: Floyd-Warshall

- Could define subproblem $\delta_{k}(u, v)=$ minimum weight of path from u to v using at most k edges, as in Bellman-Ford
- Resulting running time is $|V|$ times Bellman-Ford, i.e., $O\left(|V|^{2} \cdot|E|\right)=O\left(|V|^{4}\right)$
- Know a better algorithm from L14: Johnson achieves $O\left(|V|^{2} \log |V+|V| \cdot| E \mid\right)=O\left(|V|^{3}\right)$
- Can achieve $\Theta\left(|V|^{3}\right)$ running time (matching Johnson for dense graphs) with a simple dynamic program, called Floyd-Warshall.
- Number vertices so that $V=\{1, \ldots,|V|\}$

1. Subproblems:

- $d(u, v, k)=$ minimum weight of a path from u to v that only uses vertices from

$$
\{1,2, \ldots, k\} \cup\{u, v\}
$$

- For $u, v \in V$ and $1 \leq k \leq|V|$

2. Relate

- $x(u, v, k)=\min \{x(u, k, k-1)+x(k, v, k-1), x(u, v, k-1)\}$
- Only constant branching! No longer guessing previous vertex/edge

3. Topological order

- Increasing k : relation depends only on smaller k

4. Base

- $x(u, u, 0)=0$
- $x(u, v, 0)=w(u, v)$ if $(u, v) \in E$
- $x(u, v, 0)=\infty$ if none of the above

5. Original problem

$$
\circ x(u, v,|V|) \text { for all } u, v \in V
$$

6. Time

- $O\left(|V|^{3}\right)$ subproblems
- Each $O(1)$ work
- $O\left(|V|^{3}\right)$ in total
- Constant number of dependencies per subproblem brings the factor of $O(|E|)$ in the running time down to $O(|V|)$

