
 

1 Introduction  
Notes  

Problem: binary relationship from inputs to outputs

Algorithm: procedure mapping each input to a single output

An algorithm solves a problem if it returns a correct output for each and every problem input
Correctness: 

For small inputs: can use case analysis
For arbitrarily large inputs: algorithm either is recursive or loop in some way. Use induction.

input constant logarithmic linear log-linear quadratic polynomial exponential

Time

Efficiency: how fast does an algorithm produce a correct output?

Count the number of fixed time operations algorithm takes to return
Asymptotic Notation: ignore constant factors and low order terms 

µ µ

Model of Computation: what operations on the machine can be performed in  time.

Machine word: block of w bits (w is word size of a w-bit Word-RAM) 

Memory: Addressable sequence of machine words 

Processor supports many constant time operations on a  number of words (integers): 

integer arithmetic: (+, -, *, //, %)
logical operators: (&&, ||, !, ==, <, >, <=, =>)
bitwise arithmetic: (&, |, <<, >>, ...)
Given word a, can read word at address a, write word to address a

Data Structure : a way to store non-constant data, that supports a set of operations 

A collection of operations is called an interface

Example:

Sequence: Extrinsic order to items (first, last, nth)
Set: Intrinsic order to items (queries based on item keys) 

Data structures may implement the same interface with different performance 

Example: Static Array - fixed width slots, fixed length, static sequence interface 

StaticArray(n) : allocate static array of size n initialized to 0 in  time
StaticArray.get_at(i) : return word stored at array index i in  time
StaticArray.set_at(i, x) : write word x to array index i in  time 

More on Asymptotic Notation  

 Notation: 

Non-negative function  is in  if and only if there exists a positive real number  and 
positive integer  such that  for all . 

 Notation:

Non-negative function  is in  if and only if there exists a positive real number c and 
positive integer  such that  for all .

: 
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Type Interface Specification

Container build(X) given an iterable X, build sequence from items in X

  len() return the number of stored items

Static iter_seq() return the stored items one-by-one in sequence order

  get_at(i) return the  item

  set_at(i, x) replace the  item with x

Dynamic insert_at(i, x) add  as the  item

  delete_at(i, x) remove and return the  item

  insert_fist(x) add  as the first item

  delete_first(x) remove and return the first item

  insert_last(x) add  as the last item

  delete_last(x) remove and return the last item

Non-negative  is in  if and only if 

2 Data Structures  
Notes  

Data Structure Interfaces  

A data structure is a way to store data, with algorithms that support operations on the data
Collection of supported operations is called an interface (also API or ADT)
Interface is a specification: what operations are supported (the problem!)
Data structure is a representation: how operations are supported (the solution!)

Sequence Interface (L02, L07)  

Maintain a sequence of items (order is extrinsic)
Ex: ( , , , . . . , ) (zero indexing)
(use n to denote the number of items stored in the data structure)
Supports sequence operations:

Special case interfaces: 

stack: insert_last(x)  and delete_last()
queue: insert_last(x)  and delete_first()

Set Interface (L03-L08)  

Sequence about extrinsic order, set is about intrinsic order 

Maintain a set of items having unique keys (e.g., item x has key x.key)

(Set or multi-set? We restrict to unique keys for now.)

Often we let key of an item be the item itself, but may want to store more info than just key

Supports set operations: 
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Sequence Data
Structure

API Type     Worst Case  

Array Container Static Dynamic    

API build(x)
get_at(i)  

set_at(i)

insert_first(x)  

delete_first()

insert_last(x)  

delete_last()

insert_at(i,

x)  

delete_at(i)

Array

Type Interface Specification

Container build(X) given an iterable X, build sequence from items in X

  len() return the number of stored items

Static find(k) return the stored item with key k

Dynamic insert(x) add x to set (replace item with key x.key if one already exist)

  delete(x) remove and return the stored item with key k

Order iter_ord() return the stored items one-by-one in key order

  find_min() return the stored item with smallest key

  find_max() return the stored item with largest key

  find_next(k) return the stored item with smallest key larger than k

  find_prev(k) return the stored item with largest key smaller than k

 

Special case interfaces: 

dictionary: set without the Order operations

Array Sequence  

Array is great for static operations! get at(i)  and set at(i, x)  in Θ(1)  time!

But not so great at dynamic operations... 

(For consistency, we maintain the invariant that array is full)

Then inserting and removing items requires:

reallocating the array 
shifting all items after the modified item

Linked List Sequence  

Pointer data structure (this is not related to a Python “list”)
Each item stored in a node which contains a pointer to the next node in sequence 
Each node  has two fields: node.item  and node.next  
Can manipulate nodes simply by relinking pointers! 
Maintain pointers to the first node in sequence (called the head) 
Can now insert and delete from the front in  time! Yay! 
(Inserting/deleting efficiently from back is also possible; you will do this in PS1) 
But now get_at(i)  and set_at(i, x)  each take  time... :( 
Can we get the best of both worlds? Yes! (Kind of...)
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Sequence Data
Structure

API Type     Worst Case  

Array Container Static Dynamic    

API build(x)
get_at(i)  

set_at(i)

insert_first(x)  

delete_first()

insert_last(x)  

delete_last()

insert_at(i,

x)  

delete_at(i)

Linked List
 # 1 if we keep

track of tail

Sequence Data
Structure

API Type     Worst Case  

Array Container Static Dynamic    

API build(x)
get_at(i)  

set_at(i)

insert_first(x)  

delete_first()

insert_last(x)  

delete_last()

insert_at(i,

x)  

delete_at(i)

Dynamic Array

Dynamic Array Sequence  

Make an array efficient for last dynamic operations
Python “list” is a dynamic array 
Idea! Allocate extra space so reallocation does not occur with every dynamic operation
Fill ratio:  the ratio of items to space
Whenever array is full ( ), allocate  extra space at end to fill ratio  (e.g., 1/2)
Will have to insert  items before the next reallocation
A single operation can take  time for reallocation
However, any sequence of  operations takes  time
So each operation takes  time “on average”

Amortized Analysis  

Data structure analysis technique to distribute cost over many operations
Operation has amortized cost  if k operations cost at most  
“  amortized” roughly means  “on average” over many operations
Inserting into a dynamic array takes  amortized time

Dynamic Array Deletion  

Delete from back?  time without effort, yay! 
However, can be very wasteful in space. Want size of data structure to stay  
Attempt: if very empty, resize to r = 1. Alternating insertion and deletion could be bad...
Idea! When , resize array to ratio  where  (e.g., )
Then  cheap operations must be made before next expensive resize
Can limit extra space usage to  for any  (set ) 
Dynamic arrays only support dynamic last operations in  time
Python List append and pop are amortized  time, other operations can be ! 
(Inserting/deleting efficiently from front is also possible; you will do this in PS1) 
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Sequence Data
Structure

API Type     Worst Case  

Array Container Static Dynamic    

API build(x)
get_at(i)  

set_at(i)

insert_first(x)  

delete_first()

insert_last(x)  

delete_last()

insert_at(i,

x)  

delete_at(i)

Static Array

Linked List
 # 1 if we keep

track of tail

Dynamic Array

Set Data
Structure

API Type    
Worst Case 

 

Set Container Static Dynamic    

API build(x) find(k)
insert(k)  
delete(k)

find_min()  
find_max()

find_prev(k)  
find_next(k)

Array

Sorted Array

3 Sorting  
Notes  

Set Interface  

Storing items in an array in arbitrary order can implement a (not so efficient) set

Stored items sorted increasing by key allows:

faster find min/max (at first and last index of array)
faster finds via binary search: 

But how to construct a sorted array efficiently? 

Sorting  

Given a sorted array, we can leverage binary search to make an efficient set data structure.

Input: (static) array A of n numbers

Output: (static) array B which is a sorted permutation of A

Permutation: array with same elements in a different order
Sorted: B[i - 1]  ≤ B[i]  for all  

Example: 

A sort is destructive if it overwrites  (instead of making a new array  that is a sorted version of ) 

A sort is in place if it uses  extra space (implies destructive: in place ⊆ destructive) 

Permutation Sort  

There are  permutations of A, at least one of which is sorted. (Due to duplications)
For each permutation, check whether sorted in 
Example: 
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permutation sort analysis:

Correct by case analysis: try all possibilities (Brute Force) 
Running time:  which is exponential :(

Solving Recurrences  

Substitution: Guess a solution, replace with representative function, recurrence holds true 
Recurrence Tree: Draw a tree representing the recursive calls and sum computation at nodes
Master Theorem: A formula to solve many recurrences (R03) 

Selection Sort  

Find a largest number in prefix A[:i + 1]  and swap it to A[i]
Recursively sort prefix A[:i]  
Example: 

prefix_max  analysis:

Base case: for i = 0 , array has one element, so index of max is  

Induction: assume correct for , maximum is either the maximum of A[:i]  or A[i] , returns 
correct index in either case. □

 

Substitution: ,  
Recurrence tree: chain of  nodes with  work per node, 

Insertion Sort  

Recursively sort prefix A[:i]
Sort prefix A[:i + 1]  assuming that prefix A[:i]  is sorted by repeated swaps
Example: 

def permutation_sort(A):
    """Sort A"""
    for B in permutations(A): # O(n!)
        if is_sorted(B): # O(n)
    return B

def selection_sort(A, i=None):
    """Sort A[:i+1]"""
    if i is None: i = len(A) - 1
    if i > 0:
        j = prefix_max(A, i)
        A[i], A[j] = A[j], A[i]
        selection_sort(A, i - 1)
        
def prefix_max(A, i):
    """Return index of maximum in A[:i+1]"""
    if i > 0:
        j = prefix_max(A, i - 1)
        if A[i] < A[j]:
            return j
    return i
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insert_last  analysis:

Base case: for , array has one element so is sorted
Induction: assume correct for , if , array is sorted; otherwise, swapping last 
two elements allows us to sort A[:i]  by induction. □

 
insertion_sort  analysis: 

Base case: for , array has one element so is sorted
Induction: assume correct for , algorithm sorts A[:i]  by induction, and then insert last 
correctly sorts the rest as proved above. □

Merge Sort  

Recursively sort first half and second half (may assume power of two)
Merge sorted halves into one sorted list (two finger algorithm)
Example: 

merge  analysis: 

Base case: for , arrays are empty, so vacuously correct
Induction: assume correct for , item in A[r]  must be a largest number from remaining 
prefixes of left  and right , and since they are sorted, taking largest of last items suffices; 
remainder is merged by induction. □

def insertion_sort(A, i=None):
    """Sort A[:i+1]"""
    if i is None: i = len(A) - 1
    if i > 0:
        insertion_sort(A, i-1)
        insert_last(A, i)
        
def insert_last(A, i):
    """Sort A[:i+1] assuming sorted A[:i]"""
    if i > 0 and A[i] < A[i-1]:
        A[i], A[i-1] = A[i-1], A[i]
        insert_last(A, i-1)

def merge_sort(A, lo=0, hi=None):
    """Sort A[lo:hi]"""
    if hi is None: hi = len(A)
    if hi - lo > 1:
        mid = (lo + hi + 1) // 2
        merge_sort(A, lo, mid)
        merge_sort(A, mid, hi)
        left, right = A[lo:mid], A[mid:hi]
        merge(left, right, A, len(left), len(right), lo, hi)
        
def merge(left, right, A, i, j, lo, hi):
    """Merge sorted left[:i] anr right[:j] into A[lo:hi]"""
    if lo < hi:
        if (j <= 0) or (i > 0 and left[i-1] > right[j-1]):
            A[hi-1] = left[i-1]
            i -= 1
        else:
            A[hi-1] = right[j-1]
            j -= 1
        merge(left, right, A, i, j, lo, hi -1)
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case solution conditions

1  for some constant 

2  for some constant 

3
 for some constant  

and  for some constant 

case solution conditions intuition

1 Work done at leaves dominates

2 Work balanced across the tree

3 Work done at root dominates

merge_sort  analysis:

Base case: for , array has one element so is sorted

Induction: assume correct for , algorithm sorts smaller halves by induction, and then 
merge merges into a sorted array as proved above. □

 

Substitution: Guess  

 

Recurrence Tree: complete binary tree with depth  and  leaves, level  has  nodes 

with  work each, total: 

Master Theorem  

The Master Theorem provides a way to solve recurrence relations in which recursive calls decrease 
problem size by a constant factor. 
Given a recurrence relation of the form  and , with branching 
factor , problem size reduction factor , and asymptotically non-negative function , 
the Master Theorem gives the solution to the recurrence by comparing  to  , the 
number of leaves at the bottom of the recursion tree. 
When  grows asymptotically faster than  , the work done at each level decreases geometrically 
so the work at the root dominates; 
alternatively, when  grows slower, the work done at each level increases geometrically and the 
work at the leaves dominates. 
When their growth rates are comparable, the work is evenly spread over the tree’s  levels. 

The Master Theorem takes on a simpler form when f(n) is a polynomial, such that the recurrence has 
the from  for some constant . 

This special case is straight-forward to prove by substitution (this can be done in recitation). 
To apply the Master Theorem (or this simpler special case), you should state which case applies, and 
show that your recurrence relation satisfies all conditions required by the relevant case. 

af://n660


There are even stronger (more general) formulas to solve recurrences, but we will not use them in 
this class. 

4 Hashing  
Notes  

Comparison Model  

In this model, assume algorithm can only differentiate items via comparisons
Comparable items: black boxes only supporting comparisons between pairs
Comparisons are , outputs are binary: True or False
Goal: Store a set of n comparable items, support find(k) operation
Running time is lower bounded by # comparisons performed, so count comparisons! 

Decision Tree  

Any algorithm can be viewed as a decision tree of operations performed
An internal node represents a binary comparison, branching either True or False
For a comparison algorithm, the decision tree is binary (draw example)
A leaf represents algorithm termination, resulting in an algorithm output
A root-to-leaf path represents an execution of the algorithm on some input
Need at least one leaf for each algorithm output, so search requires  leaves 

Comparison Search Lower Bound  

What is worst-case running time of a comparison search algorithm?
running time  # comparisons  max length of any root-to-leaf path  height of tree
What is minimum height of any binary tree on  nodes?
Minimum height when binary tree is complete (all rows full except last)

, so running time of any comparison sort is S
Sorted arrays achieve this bound! Yay!
More generally, height of tree with  leaves and max branching factor  is 
To get faster, need an operation that allows super-constant  branching factor. How?? 

Direct Access Array  

Exploit Word-RAM  time random access indexing! Linear branching factor!
Idea! Give item unique integer key k in , store item in an array at index  
Associate a meaning with each index of array.
If keys fit in a machine word, i.e. , worst-case  find/dynamic operations! Yay!
6.006: assume input numbers/strings fit in a word, unless length explicitly parameterized
Anything in computer memory is a binary integer, or use (static) 64-bit address in memory
But space , so really bad if ... :( 
Example: if keys are ten-letter names, for one bit per name, requires  TB space
How can we use less space? 

Hashing  

Idea! If , map keys to a smaller range  and use smaller direct access array

Hash function:  (also hash map) 

Direct access array called hash table,  called the hash of key k

If , no hash function is injective by pigeonhole principle

Always exists keys  such that   Collision! :( 

Can’t store both items at same index, so where to store? Either:
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store somewhere else in the array (open addressing) 

complicated analysis, but common and practical
store in another data structure supporting dynamic set interface (chaining) 

Chaining  

Idea! Store collisions in another data structure (a chain)
If keys roughly evenly distributed over indices, chain size is   
If chain has  size, all operations take  time! Yay!
If not, many items may map to same location, e.g. , chain size is  :(
Need good hash function! So what’s a good hash function?

Hash Functions  

Division (bad):  

Heuristic, good when keys are uniformly distributed! 
 should avoid symmetries of the stored keys

Large primes far from powers of 2 and 10 can be reasonable
Python uses a version of this with some additional mixing
If , every hash function will have some input set that will a create  size chain
Idea! Don’t use a fixed hash function! Choose one randomly (but carefully)! 

Universal (good, theoretically):  

Hash Family 
Parameterized by a fixed prime , with  and  chosen from range 

 is a Universal family: 

Why is universality useful? Implies short chain lengths! (in expectation)
 indicator random variable over 

Size of chain at index  is random variable 
Expected size  of chain at index : 

Since , load factor , so  in expectation! 

Dynamic  

If  far from 1, rebuild with new randomly chosen hash function for new size m
Same analysis as dynamic arrays, cost can be amortized over many dynamic operations
So a hash table can implement dynamic set operations in expected amortized O(1) time! :) 
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Data Structure API Type    
Worst Case 

 

Set Container Static Dynamic    

API build(x) find(k)
insert(k)  
delete(k)

find_min()  
find_max()

find_prev(k)  
find_next(k)

Array

Sorted Array

Direct Access
Array

Hash Table

5 Linear Sorting  
Notes  

Comparison Sort Lower Bound  

Comparison model implies that algorithm decision tree is binary (constant branching factor)
Requires # leaves L ≥ # possible outputs 
Tree height lower bounded by , so worst-case running time is 
To sort array of n elements, # outputs is n! permutations 
Thus height lower bounded by 
So merge sort is optimal in comparison model 
Can we exploit a direct access array to sort faster? 

Direct Access Array Sort  

Example: 
Suppose all keys are unique non-negative integers in range , so 
Insert each item into a direct access array with size  in 
Return items in order they appear in direct access array in 
Running time is , which is  if . Yay! 

What if keys are in larger range, like ?
Idea! Represent each key  by tuple  where  and 
Specifically   and  (just a 2-digit base-n number!)
This is a built-in Python operation 
Example:   
How can we sort tuples? 

def direct_access_sort(A):
    """Sort A assuming items have distinct non-negative keys."""
    u = 1 + max([x.key for x in A])
    D = [None] * u
    for x in A:
        D[x.key] = x
    i = 0
    for key in range(u):
        if D[key] is not None:
            A[i] = D[key]
            i += 1
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Tuple Sort  

Item keys are tuples of equal length, i.e. item . 
Want to sort on all entries lexicographically, so first key  is most significant
How to sort? Idea! Use other auxiliary sorting algorithms to separately sort each key
(Like sorting rows in a spreadsheet by multiple columns) 
What order to sort them in? Least significant to most significant!
Exercise: 
Idea! Use tuple sort with auxiliary direct access array sort to sort tuples (a, b).
Problem! Many integers could have the same a or b value, even if input keys distinct
Need sort allowing repeated keys which preserves input order
Want sort to be stable: repeated keys appear in output in same order as input
Direct access array sort cannot even sort arrays having repeated keys!
Can we modify direct access array sort to admit multiple keys in a way that is stable? 

Counting Sort  

Instead of storing a single item at each array index, store a chain, just like hashing!
For stability, chain data structure should remember the order in which items were added
Use a sequence data structure which maintains insertion order
To insert item x , insert_last  to end of the chain at index 
Then to sort, read through all chains in sequence order, returning items one by one 

Radix Sort  

Idea! If , use tuple sort with auxiliary counting sort to sort tuples (a, b)
Sort least significant key b, then most significant key a
Stability ensures previous sorts stay sorted
Running time for this algorithm is . Yay!
If every  for some positive , every key has at most  digits base 
A c-digit number can be written as a c-element tuple in  time
We sort each of the c base-n digits in  time
So tuple sort with auxiliary counting sort runs in  time in total
If c is constant, so each key is  , this sort is linear ! 

def counting_sort(A):
    """Sort A assuming items have non-negative keys."""
    u = 1 + max([x.key for x in A])
    D = [[] for i in range(u)]
    for x in A:
        D[x.key].append(x)
    i = 0
    for chain in D:
        for x in chain:
            A[i] = x
            i += 1

def radix_sort(A):
    """Sort A assuming items have non-negative keys"""
    n = len(A)
    u = 1 + max([x.key for x in A])
    c = 1 + (u.bit_length() // n.bit_length())
    
    class Obj: pass
    
    D = [Obj() for a in A]
    for i in range(n):
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Algorithm Time In-place? Stable? Comments

Insertion Sort Y Y  for k-proximate

Selection Sort Y N  swaps

Merge Sort N Y stable, optimal comparison

Counting Sort N Y  when 

Radix Sort N Y  when 

Sequence Data
Structure

API Type     Worst Case  

Array Container Static Dynamic    

API build(x)
get_at(i)  

set_at(i)

insert_first(x)  

delete_first()

insert_last(x)  

delete_last()

insert_at(i,

x)  

delete_at(i)

Static Array

Linked List
 # 1 if we keep

track of tail

Dynamic Array

Goal

Set Data
Structure

API Type    
Worst Case 

 

Set Container Static Dynamic    

API build(x) find(k)
insert(k)  
delete(k)

find_min()  
find_max()

find_prev(k)  
find_next(k)

Array

Sorted Array

Goal

6 Binary Trees, Part 1  
Notes  

        D[i].digits = []
        D[i].item = A[i]
        high = A[i].key
        for j in range(c):
            high, low = divmod(high, n)
            D[i].digits.append(low)
    for i in range(c):
        for j in range(n):
            D[j].key = D[j].digits[i]
        counting_sort(D)
    for i in range(n);
        A[i] = D[i].item
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How? Binary Trees!  

Pointer-based data structures (like Linked List) can achieve worst-case performance
Binary tree is pointer-based data structure with three pointers per node
Node representation: node.{item, parent, left, right}  
Example: 

Terminology  

The root of a tree has no parent (Ex: <A> ) 

leaf of a tree has no children (Ex: <C> , <E> , and <F> )

Define depth(<X>)  of node <X>  in a tree rooted at <A>  to be length of path from <A>  to <X>

Define height(<X>)  of node <X>  to be max depth of any node in the subtree rooted at  <X>

Idea: Design operations to run in  time for root height , and maintain 

A binary tree has an inherent order: its traversal order (In-order traversal)

every node in node <X> ’s left subtree is before <X>
every node in node <X> ’s right subtree is after <X>

List nodes in traversal order via a recursive algorithm starting at root: 

Recursively list left subtree, list self, then recursively list right subtree
Runs in  time, since  work is done to list each node
Example: Traversal order is ( <F> , <D> , <B> , <E> , <A> , <C> ) 

Right now, traversal order has no meaning relative to the stored items

Later, assign semantic meaning to traversal order to implement Sequence/Set interfaces

Tree Navigation  

Find first node in the traversal order of node <X> 's subtree (last is symmetric)

Otherwise, <X>  is the first node, so return it 
Running time is  where h is the height of the tree
Example: first node in <A> 's subtree is <F>

class TreeNode:
    def __init__(self, x):
        self.item = x
        self.left = None
        self.right = None
        self.parent = None

def subtree_iter(A):
    if A.left: yield from A.left.subtree_iter()
    yield A
    if A.right: yield from A.right.subtree_iter()
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Find successor of node <X>  in the traversal order (predecessor is symmetric)

If <X>  has right child, return first of right subtree
Otherwise, return lowest ancestor of <X>  for which <X>  is in its left subtree
Running time is  where  is the height of the tree
Example: Successor of: <B>  is <E> , <E>  is <A> , and <C>  is None.

Dynamic Operations  

Change the tree by a single item (only add or remove leaves):

add a node after another in the traversal order (before is symmetric)
remove an item from the tree

Insert node <Y>  after <X>  in the traversal order

If <X>  has no right child, make <Y>  the right child of <X>
Otherwise, make <Y>  the left child of <X> 's successor (which cannot have a left child)
Running time is  where  is the height of the tree

def subtree_first(A):
    if A.left: return A.left.subtree_first()
    return A

def subtree_last(A):
    if A.right: return A.right.subtree_last()
    return A

def successor(A):
    if A.right: return A.right.subtree_first()
    while A.parent and (A is A.parent.right):
        A = A.parent
    return A.parent

def predecessor(A):
    if A.left: return A.left.subtree_last()
    while A.parent and (A is A.parent.left):
        A = A.parent
    return A.parent
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Delete the item in node <X>  from <X> 's subtree

If <X>  is a leaf, detach from parent and return

Otherwise, <X>  has a child

If <X>  has a left child, swap items with the predecessor of <X>  and recurse
Otherwise <X>  has a right child, swap items with the successor of <X>  and recurse

Running time is  where  is the height of the tree

Application: Set  

Idea! Set Binary Tree (a.k.a Binary Search Tree / BST)

Traversal order(In-order) is  sorted order increasing by key

Equivalent to BST Property: for every node, every key in left subtree  node's key  every key 
in right subtree

Then can find the node with key  in node <X> 's subtree in  time like binary search:

If  is smaller than the key at <X> , recurse in left subtree (or return None)
If  is larger than the key at <X> , recurse in right subtree (or return None)
Otherwise, return the item stored at <X>

Other Set operations follow a similar pattern

def subtree_insert_before(A, B):
    if A.left:
        A = A.left.subtree_last()
        A.right, B.parent = B, A
    else:
        A.left, B.parent = B, A
        
def subtree_insert_after(A, B):
    if A.right:
        A = A.right.subtree_first()
        A.left, B.parent = B, A
    else:
        A.right, B.parent = B, A

def subtree_delete(A):
    if A.left or A.right:   # A is a leaf node
        if A.left: B = A.predecessor()
        else:      B = A.successor()
        A.item, B.item = B.item, A.item
    if A.parent:            # A is not a leaf node
        if A.parent.left is A: A.parent.left = None
        else:                  A.parent.right = None
    return A
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class BSTNode(TreeNode):
    def subtree_find(A, k):
        if k == A.item.key: return A
        if k < A.item.key and A.left: return A.left.subtree_find(k)
        if k > A.item.key and A.right: return A.right.subtree_find(k)
        
    def subtree_find_next(A, k):
        if A.item.key <= k:
            if A.right: return A.right.subtree_find_next(k)
            else:       return None
        if A.item.key > k:
            if A.left:
                B = A.left.subtree_find_next(k)
                if B: return B
        return A
    
    def subtree_find_prev(A, k):
        if A.item.key >= k:
            if A.left: return A.left.subtree_find_prev(k)
            else:      return None
            
        if A.item.key < k:
            if A.right:
                B = A.right.subtree_find_prev(k)
                if B: return B
        return A

    def subtree_insert(A, B):
        if B.item.key < A.item.key:
            if A.left: A.left.subtree_insert(B)
            else:      A.subtree_insert_before(B)
        elif B.item.key > A.item.key:
            if A.right: A.right.subtree_insert(B)
            else:       A.subtree_insert_after(B)
        else: A.item = B.item

class BinaryTree:
    def __init__(self, node_type=BinaryNode):
        self.root = None
        self.size = 0
        self.node_type = node_type
    
    def __len__(self): return self.size
    def __iter__(self): 
        if self.root:
            for item in self.root.subtree_iter():
                yield node.item
            
class BinaryTreeSet(BinaryTree):
    def __init__(self): 
        super().__init__(node_type=BSTNode)
    
    def iter_order(self): yield from self
    
    def build(self, X):
        for x in X: self.insert(x)
            
    def find_min(self):
        if self.root: return self.root.subtree_first().item
        
    def find_max(self):
        if self.root: return self.root_subtree_last().item



Application: Sequence  

Idea! Sequence Binary Tree: Traversal order is sequence order

How do we find  node in traversal order of a subtree? Call this operation subtree_at(i)

Could just iterate through entire traversal order, but that’s bad,  

However, if we could compute a subtree’s size in , then can solve in  time

How? Check the size  of the left subtree and compare to 
If , recurse on the left subtree
If , recurse on the right subtree with 
Otherwise, , and you’ve reached the desired node!

Maintain the size of each node’s subtree at the node via augmentation

Add node.size  field to each node  
When adding new leaf, add  to a.size  for all ancestors a in  time
When deleting a leaf, add  to a.size  for all ancestors a in  time

Sequence operations follow directly from a fast subtree_at(i)  operation

Naively, build(X)  takes  time, but can be done in  time; see recitation  

7 Binary Tree II: AVL  
Notes  

        
    def find(self, k):
        if self.root:
            node = self.root.subtree_find(k)
            if node: return node.item
            
    def find_next(self, k):
        if self.root:
            node = self.root.subtree_find_next(k)
            if node: return node.item
            
    def find_prev(self, k):
        if self.root:
            node = self.root.subtree_find_prev(k)
            if node: return node.item
    
    def insert(self, x):
        new_node = self.node_type(x)
        if self.root:
            self.root.subtree_insert(new_node)
            if new_node.parent is None: return False
        else:
            self.root = new_node
        self.size += 1
        
    def delete(self, k):
        assert self.root
        node = self.root.subtree_find(k)
        assert node
        ext = node.subtree_delete()
        if ext.parent is None: self.root = None
        self.size -= 1
        return ext.item
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Height Balance  

How to maintain height  where  is number of nodes in tree?

A binary tree that maintains  height under dynamic operations is called balanced

There are many balancing schemes (Red-Black Trees, Splay Trees, 2-3 Trees, ...)
First proposed balancing scheme was the AVL Tree(Adelson-Velsky and Landis, 1962)

Rotations  

Need to reduce height of tree without changing its traversal order, so that we represent the same 
sequence of items. 

How to change the structure of a tree, while preserving traversal order? Rotations!

A rotation relinks  pointers to modify tree structure and maintains traversal order

Rotations Suffice  

Claim:  rotations can transform a binary tree to any other with same traversal order
Proof: Repeatedly perform last possible right rotation in traversal order; resulting tree is a canonical 
chain. Each rotation increases depth of the last node by 1. Depth of last node in final chain is , 
so at most  rotations are performed. Reverse canonical rotations to reach target tree.  Q.E.D
Can maintain height-balance by using  rotations to fully balance the tree, but slow :(
We will keep the tree balanced in  time per operation!

def subtree_rotate_right(D):
    assert D.left
    B, E = D.left, D.right
    A, C = B.left, B.right
    
    # make sure new B has the right connection to D's parent
    D, B = B, D
    D.item, B.item = D.item, B.item
    
    B.left, B.right = A, D
    D.left, D.right = C, E
    
    if A: A.parent = B
    if E: E.parent = D
        
def subtree_rotate_left(B):
    assert B.right
    A, D = B.left, B.right
    C, E = D.left, D.right
    
    B, D = D, B
    B.item, D.item = D.item, B.item
    
    D.left, D.right = B, E
    B.left, B.right = A, C
    
    if A: A.parent = B
    if E: E.parent = D
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AVL Trees: Height Balance  

AVL trees maintain height-balance (also called the AVL property)

A node is height-balanced if heights of its left and right subtree differ by at most 1
Let skew of a node be the height of its right subtree minus that of its left subtree
Then a node is height-balanced if its skew is  or 

Claim: A binary tree with height-balanced nodes has height  (i.e., )

Proof: Suffices to show fewest nodes  in any height  tree is 

Suppose adding or removing leaf from a height-balanced tree results in imbalance

Only subtree of the leaf's ancestors have changed in height or skew
Heights changed by only , so skews still have magnitude 
Idea: Fix height-balance of ancestors starting from leaf up to the root
Repeatedly rebalanced lowest ancestor that is not height-balanced, wlog assume skew 2

Local Rebalance: Given binary tree node <B> :

whose skew 2 and
every other node in <B> 's subtree is height-balanced
then <B> ’s subtree can be made height-balanced via one or two rotations
(after which <B? ’s height is the same or one less than before)

Proof:

Since skew of <B>  is 2, <B>? ’s right child  exists

Case 1: skew of <F>  is 0 or Case 2: skew of <F>  is 1

Perform a left rotation on <B>

 

TBC

Computing Height  

How to tell whether node  is height-balanced? Compute heights of subtrees!

How to compute the height of node <X>  ? Naive algorithm:

Recursively compute height of the left and right subtrees of <X>
Add  to the max of the two heights
Runs in  time, since we recurse on every node :( 

Idea: Augment each node with the height of its subtree! (Save for later!)

Height of <X>  can be computed in  time from the heights of its children: 

Look up the stored heights of left and right subtrees in  time
Add  to the max of the two heights

During dynamic operations, we must maintain our augmentation as the tree changes shape

Recompute subtree augmentations at every node whose subtree changes: 

Update relinked nodes in a rotation operation in  time (ancestors don’t change) 
Update all ancestors of an inserted or deleted node in  time by walking up the tree 

Steps to Augment a Binary Tree  

In general, to augment a binary tree with a subtree property P, you must:

State the subtree property P(<X>)  you want to store at each node <X>
Show how to compute P(<X>)  from the augmentations of <X> ’s children in  time
Then stored property P(<X>)  can be maintained without changing dynamic operation costs
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Application: Sequence  

For sequence binary tree, we needed to know subtree sizes

For just inserting/deleting a leaf, this was easy, but now need to handle rotations

Subtree size is a subtree property, so can maintain via augmentation

Can compute size from sizes of children by summing them and adding 1

Conclusion  

Set AVL trees achieve  time for all set operations
except  time for build and  time for iter
Sequence AVL trees achieve  time for all sequence operations
except  time for build and iter 

Application: Sorting  

Any Set data structure defines a sorting algorithm: build (or repeatedly insert) then iter
For example, Direct Access Array Sort from Lecture 5
AVL Sort is a new  time sorting algorithm 

8 Binary Heaps  
Notes  

Priority Queue Interface  

Keep track of many items, quickly access/remove the most important

Example: router with limited bandwidth, must prioritize certain kinds of messages 
Example: process scheduling in operating system kernels 
Example: discrete-event simulation (when is next occurring event?) 
Example: graph algorithms (later in the course)

Order items by key = priority so Set interface (not Sequence interface) 

Operation Specification

build(X) build priority queue from iterable X

insert(x) add item x to data structure

delete_max() remove and return stored item with largest key

find_max() return stored item with largest key

Optimized for a particular subset of Set operations: 

(Usually optimized for max or min, not both) 

Focus on insert  and delete_max  operations: build  can repeatedly insert ; find_max()  can 
insert(delete_min())

class PriorityQueue:
    def __init__(self):
        self.A = []
    
    def insert(self, x):
        self.A.append(x)
        
    def delete_max(self):
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Priority Queue Sort  

Any priority queue data structure translates into a sorting algorithm: 

build(A) , e.g., insert items one by one in input order
Repeatedly delete_min()  (or delete_max() ) to determine (reverse) sorted order

All the hard work happens inside the data structure

Running time is 

Many sorting algorithms we’ve seen can be viewed as priority queue sort: 

Priority Queue: Set AVL Tree  

Set AVL trees support insert(x) , find_min() , find_max() , delete_min() , and delete_max()  in 
 time per operation

So priority queue sort runs in  time

This is (essentially) AVL sort from Lecture 7
Can speed up find_min()  and find_max()  to  time via subtree augmentation

But this data structure is complicated and resulting sort is not in-place

Is there a simpler data structure for just priority queue, and in-place  sort? YES, binary heap 
and heap sort

Essentially implement a Set data structure on top of a Sequence data structure (array), using what we 
learned about binary trees 

Priority Queue: Array  

Store elements in an unordered dynamic array
insert(x) : append x to end in amortized  time
delete_max() : find max in , swap max to the end an            d remove
insert  is quick, but delete_max  is slow
Priority queue sort is selection sort! (plus some copying) 

        assert len(self.A) > 0
        return self.A.pop()   # not correct by it self.
    
    @classmethod
    def sort(PQ, A):
        pq = PQ()
        for x in A: pq.insert(x)
        out = [pq.delete_max() for _ in A]
        return reversed(out) 
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We use *args  to allow insert to take one argument (as makes sense now) or zero arguments; we will 
need the latter functionality when making the priority queues in-place. 

Priority Queue: Sorted Array  

Store elements in a sorted dynamic array
insert(x) : append x  to end, swap down to sorted position in  time
delete_max() : delete from end in  amortized
delete_max  is quick, but insert  is slow
Priority queue sort is insertion sort! (plus some copying) 
Can we find a compromise between these two array priority queue extremes? 

Array as a Complete Binary Tree  

Idea: interpret an array as a complete binary tree, with maximum  nodes at depth  except at the 
largest depth, where all nodes are left-aligned
Equivalently, complete tree is filled densely in reading order: root to leaves, left to right 
Perspective: bijection between arrays and complete binary trees 
Height of complete tree perspective of array of  item is , so balanced binary tree 

Implicit Complete Tree  

Complete binary tree structure can be implicit instead of storing pointers
Root is at index 0
Compute neighbors by index arithmetic: 

class PQArray(PriorityQueue):
    def delete_max(self):  # O(n)
        n, A, m = len(self.A), self.A, 0
        for i in range(1, n):
            m = i if A[m].key < A[i].key else m
        A[m], A[n] = A[n], A[m]
        return super().delete_max()  # pop from end

class PQSortedArray(PriorityQueue):
    def insert(self, x=None):
        if x is not None: super().insert(x)
        i, A = len(self.A) - 1, self.A
        while 0 < i and A[i+1].key < A[i].key:
            A[i+1], A[i] = A[i], A[i+1]
            i -= 1
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Binary Heaps  

Idea: keep larger elements higher in tree, but only locally

Max-Heap Property at node 

Max-heap is an array satisfying max-heap property at all nodes

Claim: In a max-heap, every node i satisfies  for all nodes  in subtree(i)

Proof:

Induction on 
Base case:  implies  implies  (in fact, equal)

, so  by induction
 by Max-Heap Property at parent(j)

In particular, max item is at root of max-heap 

Heap Insert  

Append new item  to end of array in  amortized, making it next leaf  in reading order

max_heapify_up(i) : swap with parent until Max-Heap Property

Check whether  (part of Max-Heap Property at parent(i))
If not, swap items  and , and recursively max_heapify_up(parent(i))

Correctness:

Max-Heap Property guarantees all nodes  descendants, except  might be > some of its 
ancestors (unless  is the root, so we're done)
If swap is necessary, same guarantee is true with  instead of 

Running time: height of tree, so 

Heap Delete Max  

Can only easily remote last element from dynamic array, but max key is in root of tree

So swap item at root node  with last item at node  in heap array

max_heapify_down(i) : swap root with larger child until Max-Heap Property

Check whether  (Max-Heap Property at i)
If not, swap  with  for child  with maximum key, and recursively 
max_heapify_down(j)

Correctness:

Max-Heap Property guarantees all nodes  descendants, except  might be < some 
descendants (unless  is a leaf, so we're done)
If swap is necessary, same guarantee is true with  instead of 

Running time: height of tree, so 

def parent(i):
    p = (i - 1) // 2
    return p if 0 < i else i

def left(i, n):
    l = 2 * i + 1
    return l if l < n else i

def right(i, n):
    r = 2 * i + 2
    return r if r < n else i

class PQHeap(PriorityQueue):
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Heap Sort  

Plugging max-heap into priority queue sort gives us a new sorting algorithm
Running time is  because each insert  and delete_max  takes 
But often include two improvements to this sorting algorithm: 

In-place Priority Queue Sort  

Max-heap  is a prefix of a larger array , remember how many items  belong to heap
 is initially zero, eventually  (after inserts), then zero again (after deletes)

insert()  absorbs next item in array at index  into heap
delete_max()  moves max item to end, then abandons it by decrementing 
In-place priority queue sort with Array is exactly Selection Sort
In-place priority queue sort with Sorted Array is exactly Insertion Sort
In-place priority queue sort with binary Max Heap is Heap Sort

    def insert(self, x=None):
        if x: super().insert(x)
        n, A = self.n, self.A
        max_heapify_up(A, n, n-1)
    
    def delete_max(self):
        n, A = self.n, self.A
        A[0], A[n] = A[n], A[0]
        max_heapify_down(A, n, 0)
        return super().delete_max()
    
def max_heapify_up(A, n, c):
    p = parent(c)
    if A[p].key < A[c].key:
        A[c], A[p] = A[p], A[c]
        max_heapify_up(A, n, p)
        
        
def max_heapify_down(A, n, p):
    l, r = left(p, n), right(p, n)
    c = l if A[r].key < A[l].key else r
    if A[p].key < A[c].key:
        A[c], A[p] = A[p], A[c]
        max_heapify_down(A, n, c)    

class PriorityQueue:
    def __init__(self, A):
        self.n, self.A = 0, A
    
    def insert(self):
        assert self.n < len(self.A)
        self.n += 1
    
    def delete_max(self):
        assert self.n >= 1
        self.n -= 1
    
    @classmethod
    def sort(Queue, A):
        pq = Queue(A)
        for i in range(len(A)): pq.insert()
        for i in range(len(A)): pq.delete_max()
        return pq.A
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Linear Build Heap  

Inserting  items into heap call max_heapify_up(i)  for  from  to  (root down):

Idea! Treat full array as a complete binary tree from start, then max_heapify_down(i)  for i from 
to  (leaves up):

So can build  heap in  time

(Doesn't speed up  performance of heap sort)

Sequence AVL Tree Priority Queue  

Where else have we seen linear build time for an otherwise logarithmic data structure? Sequence AVL 
Tree!

Store items of priority queue in Sequence AVL Tree in arbitrary order (insertion order)

Maintain max (and/or min) augmentation: 

node.max  = pointer to node in subtree of node  with maximum key 

This is a subtree property, so constant factor overhead to maintain 
find_min()  and find _max()  in  time 

delete_min()  and delete_max()  in  time

build(A)  in  time 

Same bounds as binary heaps (and more) 

Set vs. Multiset  

While our Set interface assumes no duplicate keys, we can use these Sets to implement Multisets that 
allow items with duplicate keys: 

Each item in the Set is a Sequence (e.g., linked list) storing the Multiset items with the same key, 
which is the key of the Sequence

In fact, without this reduction, binary heaps and AVL trees work directly for duplicate-key items 
(where e.g. delete_max  deletes some item of maximum key), taking care to use ≤ constraints 
(instead of < in Set AVL Trees) 

9 Breadth-First Search  
Notes  

Graph Applications  

Why? Graphs are everywhere!
any network system has direct connection to graphs
e.g., road networks, computer networks, social networks
the state space of any discrete system can be represented by a transition graph
e.g., puzzle & games like Chess, Tetris, Rubik’s cube

def build_max_heap(A):
    n = len(A)
    for i in range(n // 2, -1, -1):
        max_heapify_down(A, n, i)
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e.g., application workflows, specifications 

Graph Definitions  

Graph  is a set of vertices  and a set of pairs of vertices 

Directed edges are ordered pairs, e.g.,  for 

Undirected edges are unordered pairs,   for  i.e.,  and 

In this class, we assume all graphs are simple:

edges are distinct, e.g.,  only occurs once in E (though  may appear), and
edges are pairs of distinct vertices, e.g.,  for all  

Simple implies , since for undirected,  for directed 

Neighbor Sets/Adjacencies  

The outgoing neighbor set of  is 
The incoming neighbor set of  is 
The out-degree of a vertex  is  
The in-degree of a vertex  is 
For undirected graphs,  and  
Dropping superscript defaults to outgoing, i.e.,  and 

Graph Representations  

To store a graph , we need to store the outgoing edges  for all 
First, need a Set data structure  to map  to 
Then for each , need to store  in another data structure called an adjacency list
Common to use direct access array or hash table for , since want lookup fast by vertex
Common to use array or linked list for each  since usually only iteration is needed
For the common representations,  has size , while each  has size  
Since  by handshaking lemma, graph storable in  space
Thus, for algorithms on graphs, linear time will mean  (linear in size of graph) 

Paths  

A path is a sequence of vertices  where  for all . 

A path is simple if it does not repeat vertices 

The length  of a path  is the number of edges in the path

The distance  from  to  is the minimum length of any path from  to 

i.e., the length of a shortest path from  to  
(by convention,  if  is not connected to ) 

Graph Path Problems  

There are many problems you might want to solve concerning paths in a graph: 
SINGLE_PAIR_REACHABILITY(G, s, t):  
is there a path in  from  to  ? 

af://n1788
af://n1806
af://n1820
af://n1838
af://n1853


SINGLE_PAIR_SHORTEST_PATH(G, s, t):  
return distance , and a shortest path in  from  to 
SINGLE_SOURCE_SHORTEST_PATHS(G, s):  
return  for all  , and a shortest-path tree containing a shortest path from  to every 

 (defined below)
Each problem above is at least as hard as every problem above it  
(i.e., you can use a black-box that solves a lower problem to solve any higher problem)
We won’t show algorithms to solve all of these problems 
Instead, show one algorithm that solves the hardest in  time! 

Shortest Paths Tree  

How to return a shortest path from source vertex  for every vertex in graph?
Many paths could have length , so returning every path could require  time
Instead, for all  , store its parent : second to last vertex on a shortest path from 
Let  be null (no second to last vertex on shortest path from  to ) 
Set of parents comprise a  with  size!  
(i.e., reversed shortest paths back to  from every vertex reachable from ) 

Breadth-First Search (BFS)  

How to compute  and  for all  ? 

Store  and  in Set data structures mapping vertices  to distance and parent 

(If no path from  to , do not store  in  and set  to )

Idea! Explore graph nodes in increasing order of distance

Goal: Compute level sets  (i.e., all vertices at distance )

Claim: Every vertex  must be adjacent to a vertex  (i.e., ) 

Claim: No vertex that is in  for some , appears in 

Invariant:  and  have been computed correctly for all  in any  for  

Base case  

Inductive Step: To compute : 

for every vertex  in : 

for every vertex  that does not appear in any  for :

add  to , set , and set 
Repeatedly compute  from  for  for increasing  until  is the empty set

Set  for any  for which  was not set 

Breadth-first search correctly computes all  and  by induction

Running time analysis:

Store each  in data structure with  time iteration and  time insertion (i.e., in a 
dynamic array or linked list) 
Checking for a vertex  in any  for  can be done by checking for  in  
Maintain  and  in Set data structures supporting dictionary ops in  time (i.e., direct 
access array or hash table)
Algorithm adds each vertex  to  level and spends  time for each  
Work upper bounded by  by handshake lemma
Spend  at end to assign  for vertices  not reachable from So 
breadth-first search runs in linear time!  

def bfs(adj, s):
    parent = [None for v in adj]
    parent[s] = s
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10 Depth-First Search  
Notes  

Depth-First Search (DFS)  

Searches a graph from a vertex , similar to BFS

Solves Single Source Reachability, not Single Source Shortest Paths. Useful for solving other problems 
(later)!

Return (not necessarily shortest) parent tree of parent pointers back to .

Idea! Visit outgoing adjacencies recursively, but never revisit a vertex

i.e., follow any path until you get stuck, backtrack until finding an unexplored path to explore

, then run , where

visit(u)

for every  that does not appear in :

set  and recursively call visit(v)
(DFS finishes visiting vertex , for use later!)

    levels = [[s]]
    while 0 < len(levels[-1]):
        level = []
        for u in levels[-1]:
            for v in adj[u]:
                if parent[v] is None:
                    parent[v] = u
                    level.append(v)
        levels.append(level)
    return parents

def unweighted_shortest_path(adj, s, t):
    parents = bfs(adj, s)
    if parent[t] is None: return None
    i = t
    path = [t]
    while i != s:
        i = parent[i]
        path.append(i)
    return reversed(path)

def dfs(adj, s, parent=None, order=None):
    if parent is None:
        parent = [None for v in adj]
        parent[s] = s
        order = []
    for v in adj[s]:
        if parent[v] is None:
            parent[v] = s
            dfs(adj, v, parent, order)
    order.append(s)
    return parent, order
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Correctness  

Claim: DFS visits  and correctly sets  for every vertex  reachable from 

Proof: induct on , for claim on only vertices within distance  from 

Base case  is set correctly for  and  is visited
Inductive step: Consider vertex  with 
Consider vertex , the second to last vertex on some shortest path from  to 
By induction, since  , DFS visits  and sets  correctly
While visiting , DFS considers 
Either  is in , so has already been visited, or  will be visited while visiting 
In either case,  will be visited by DFS and will be added correctly to        

Running Time  

Algorithm visits  each vertex  at most once and spends  time for each 
Work upper bounded by 
Unlike BFS, not returning a distance for each vertex, so DFS runs in  time 

Full-BFS and Full-DFS  

Suppose want to explore entire graph, not just vertices reachable from one vertex

Idea! Repeat a graph search algorithm  on any unvisited vertex

Repeat the following until all vertices have been visited:

Choose an arbitrary unvisited vertex , use  to explore all vertices reachable from 
We call this algorithm Full-A, specifically Full-BFS or Full-DFS if A is BFS or DFS

Visits every vertex once, so both Full-BFS and Full-DFS run in  time

DFS Edge Classification  

Consider a graph edge from vertex  to , we call the edge a tree edge if the edge is part of the DFS 
tree (i.e. )

Otherwise, the edge from  to  is not a tree edge, and is either:

a back edge -  is a descendant of 
a forward edge -  is a descendant of 
a cross edge - neither are descendants of each other

Graph Connectivity  

An undirected graph is connected if there is a path connecting every pair of vertices
In a directed graph, vertex  may be reachable from , but  may not be reachable from  
Connectivity is more complicated for directed graphs (we won’t discuss in this class)
Connectivity(G) : is undirected graph G connected?
Connected_Components(G) : given undirected graph , return partition of  into subsets 

 (connected components) where each  is connected in  and there are no edges between 
vertices from different connected components 

def full_dfs(adj):
    parent = [None for v in adj]
    order = []
    for v in range(len(adj)):
        if parent[v] is None:
            parent[v] = v
            dfs(adj, v, parent, order)
    return parent, order
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Consider a graph algorithm  that solves Single Source Reachability
Claim:  can be used to solve Connected Components
Proof: Run Full- . For each run of , put visited vertices in a connected component   

Topological Sort  

A Directed Acyclic Graph (DAG) is a directed graph that contains no directed cycle

A Topological Order of a graph  is an ordering  on the vertices such that:  
every  satisfies 

Exercise: Prove that a directed graph admits a topological ordering if and only if it is a DAG

How to find a topological order?

A Finishing Order is the order in which a Full-DFS finishes visiting each vertex in G

Claim: If  is a DAG, the reverse of a finishing order is a topological order

Proof: Need to prove, for every  that  is ordered before , 
i.e., the visit to  finishes before visiting . Two cases: 

If  visited before :

Before visit to  finishes, will visit  (via  or otherwise)
Thus the visit to  finishes before visiting 

If  visited before :

 can’t be reached from  since graph is acyclic
Thus the visit to  finishes before visiting 

Cycle Detection  

Full-DFS will find a topological order if a graph  is acyclic

If reverse finishing order for Full-DFS is not a topological order, then  must contain a cycle

Check if  is acyclic: for each edge , check if  is before  in reverse finishing order

Can be done in  time via a hash table or direct access array

To return such a cycle, maintain the set of ancestors along the path back to  in Full-DFS

Claim: If  contains a cycle, Full-DFS will traverse an edge from  to an ancestor of 

Proof: Consider a cycle  in 

Without loss of generality, let  be the first vertex visited by Full-DFS on the cycle
For each , before visit to  finishes, will visit  and finish
Will consider edge , and if  has not been visited, it will be visited now
Thus, before visit to  finishes, will visit  (for the first time, by  assumption)
So, before visit to  finishes, will consider , where  is an ancestor of   

 

11 Weighted Shortest Paths  
Notes  

Weighted Graphs  

A weighted graph is a graph  together with a weight function 

i.e., assign each edge  an integer weight: 

Many applications for edge weights in a graph:

distances in road network
latency in network connections
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Restrictions   SSSP Algorithm    

Graph Weights Name Running Time  

General Unweighted BFS  

DAG Any DAG Relaxation  

General Any Bellman-Ford  

General Non-negative Dijkstra  

strength of a relationship in a social network
Two common ways to represent weights computationlly:

Inside graph representation: store edge weight with each vertex in adjacency lists
Store separate Set data structure mapping each edge to its weight

We assume a representation that allows querying the weight of an edge in  time

Examples

Weighted Paths  

The weight  of a path  in a weighted graph is the sum of weights of edges in the path

The (weighted) shortest path from  to  is path of minimum weight from  to 

 is the shortest-path weight from  to 

(Often use "distance" for shortest -path weight in weighted graphs, not number of edges)

As with unweighted graphs:

 if no path from   to 
Subpaths of shortest paths are shortest paths (or else could splice in a shortest path)

Why infimum not minimum? Possible that no finite-length minimum-weight path exists

When? Can occur if there is a negative-weight cycle in the graph, Ex:  in 

A negative-weight cycle is a path  starting and ending at same vertex  

 if there is a path from  to  through a vertex on a negative-weight cycle

If this occurs, don't want a shortest path, but may want the negative-weight cycle

Weighted Shortest Paths Algorithms  

Already know one algorithm: Breadth-First Search! Runs in  time when, e.g.:

graph has positive weights, and all weights are the same
graph has positive weights, and sum of all weights at most 

For general weighted graphs, we don't know how to solve SSSP in  time

But if your graph is a Directed Acyclic Graph you can!
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Shortest-Paths Tree  

For BFS, we kept track of parent pointers during search. Alternatively, compute them after!

If know  for all vertices , can construct shortest-path tree in  time

For weighted shortest paths from , only need parent pointers for vertices  with finite 

Initialize empty  and set 

For each vertex  where  is finite:

For each outgoing neighbor :

If  not assigned and 

There exits a shortest path through edge , so set 
Parent pointers may traverse cycles of zero weight. Mark each vertex in such a cycle.

For each unmarked vertex  (including vertices later marked):

For each  where  is marked and 

Unmark vertices in cycle containing  by traversing parent pointers from 
Set , breaking the cycle

Relaxation  

A relaxation algorithm searches for a solution to an optimization problem by starting with a solution 
that is not optimal, then iteratively improves the solution until it becomes an optimal solution to the 
original problem. 

DAG Relaxation  

Idea! Maintain a distance estimate  (initially  ) for each vertex , that always upper 
bounds true distance , then gradually lowers until 

When do we lower? When an edge violates the triangle inequality!

Triangle Inequality: the shortest-path weight from  to  cannot be greater than the shortest path 
from  to  through another vertex , i.e.,  for all 

If  for some edge , then triangle inequality is violated :(

Fix by lowering  to , i.e., relax  to satisfy violated constraint

Claim: Relaxation is safe: maintains that each  is weight of a path to  (or ) 

Proof: Assume  is weight of a path (or ) for . Relaxing some edge  sets 
 to , which is the weight of a path from  to  through  

Set  for all , then set 

Process each vertex  in a topological sort order of G:

For each outgoing neighbor :

def try_to_relax(adj, w, d, parent, u, v):
    if d[v] > d[u] + w(u, v):
        d[v] = d[u] + w(u, v)
        parent[v] = u
        
def general_relax(adj, w, s):
    d = [float('inf') for _ in adj]
    parent = [None for _ in adj]
    d[s], parent[s] = 0, s
    while some_edge_relaxable(adj, w, d):
        (u, v) = get_relaxable_edge(adj, w, d)
        try_to_relax(adj, w, d, parent, u, v)
    return d, parent
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If 

relax edge , i.e., set 

Correctness  

Claim: At end of DAG Relaxation:  for all 

Proof: Induct on :  for all  in first  vertices in topological order

Base case: Vertex  and every vertex before  in topological order satisfies claim at start
Inductive Step: Assume claim holds for first  vertices, let  be the 
Consider a shortest path from  to , and let  be the vertex preceding  on path 

 occurs before  in topological order, so  by induction
When processing  is set to be no larger than 
But  since relaxation is safe, so 

Alternatively:

For any vertex , DAG relaxation sets 
Shortest path to  must pass through some incoming neighbor  of 
So if  for all  by induction, then 

Running Time  

Initialization takes  time, and Topological Sort takes  time
Additional work upper bounded by 
Total running time is linear, 

12 Bellman-Ford  
Notes  

Simple Shortest Paths  

If graph contains cycles and negative weights, might contain negative-weight cycles :(

If graph does not contain negative-weight cycles, shortest paths are simple!

Claim 1:  If  is finite, there exists a shortest path to  that is simple

Proof: By contradiction:

Suppose no simple shortest path: let  be a shortest path with fewest vertices
 not simple, so exists cycle  in ;  has non-negative weight (or else )

Removing  form  forms path  with fewest vertices and weight 
Since simple paths cannot repeat vertices, finite shortest paths contain at most  edges

def DAGRelaxation(adj, w, s):
    _, order = dfs(adj, s)
    d = [float('inf') for _ in adj]
    parent = [None for _ in adj]
    d[s], parent[s] = 0, s
    for u in order:
        for v in adj[u]:
            try_to_relax(adj, w, d, parent, u, v)
    return d, parent
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Negative Cycle Witness  

k-Edge Distance : the minimum weight of any path from  to  using  edges

Idea! Compute  and  for all 

If , since a shortest path is simple (or nonexistent)

If 

there exists a shorter non-simple path to , so 
call  a (negative cycle) witness

However, there may be vertices with  shortest-path weight that are not witness

Claim 2: if , then  is reachable from a witness

Proof: Suffices to prove: every negative-weight cycle reachable from s contains a witness 

Consider a negative-weight cycle  reachable from 
For , let  denote ’s predecessor in , where 
Then  (RHS weight of some path on  vertices)
so 
If  contains no witness,  for all , a contradiction 

Bellman-Ford  

Idea! Use graph duplication: make multiple copies (or levels) of the graph

 levels: vertex  in level  represents reaching vertex  from  using  edges

If edges only increase in level, resulting graph is a DAG!

Construct new DAG  from 

 has  vertices  for all  and 

 has  edges:

 edges  for  of weight zero for each 
 edges  for  of weight  for each 

Run DAG Relaxation on  from  to compute  for all 

For each vertex: set 

For each witness  where 

For each vertex  reachable from  in :

set  
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TBC

Running Time  

 has size  and can be constructed in as much time
Running DAG Relaxation on takes linear time in the size of 
Does  work for each vertex reachable from a witness
Finding reachability of a witness takes  time, with at most  witnesses: 
(Alternatively, connect super node  to witnesses via 0-weight edges, linear search from )
Pruning  at start to only subgraph reachable from  yields  time algorithm 

13 Dijkstra's Algorithm  
Notes  

INF = float('inf')

def bellman_ford(adj, w, s):
    # initialization
    d = [INF for _ in adj]     
    parent = [None for _ in adj]
    d[s], parent[s] = 0, s
    V = len(adj)
    
    # construct shortest paths in rounds
    for k in range(V-1):
        for u in range(V):
            for v in adj[u]:
                try_to_relax(adj, w, d, parent, u, v)
    
    # check for negative weight cycles accessible from s
    for u in range(V):
        for v in adj[u]:
            if d[v] > d[u] + w(u, v):
                raise Exception("found a negative weight in cycle!")
    return d, parent
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Non-negative Edge Weights  

Idea! Generalize BFS approach to weighted graphs:

Grow a sphere centered at source s
Repeatedly explore closer vertices before further ones
But how to explore closer vertices if you don't know distances beforehand? :(

Observation 1: If weights non-negative, monotonic distance increasing along shortest paths

i.e., if vertex  appears on a shortest path from  to , then 
Let  be the subset of vertices reachable within distance  from 
If  then any shortest path from  to  only contains vertices from 
Perhaps grow  one vertex at a time! (but growing for every  is slow if weights large)

Observation 2: Can solve SSSP fast if given order of vertices in increasing distance from 

Remove edges that go against this order (since cannot participate in shortest paths)
May still have cycles if zero-weight edges: repeatedly collapse into single vertices
Compute  for each  using DAG relaxation in  time

Dijkstra's Algorithm  

Idea! Relax edges from each vertex in increasing order of distance from source 

Idea! Efficiently find next vertex in the order using a data structure

Operation Specification

Q.build(X) initialize  with items in iterator X

Q.delete_min() remove an item with minimum key

Q.decrease_key(id, k) find stored item with ID id  and change key to k

Changeable Priority Queue  on items with keys and unique IDs, supporting operations:

Implement by cross-linking a Priority Queue  and a Dictionary  mapping IDs into 

Assume vertex IDs are integers from  to  so can use a direct access array for D

For brevity, say item x is the tuple 

Set  for all , then set 

Build changeable priority queue  with an item  for each vertex 

For vertex  in outgoing adjacencies :

If :

Relax edge , i.e., set 
Decrease the key of  in  to new estimate 

af://n2414
af://n2445


def dijkstra(adj, w, s):
    d = [INF for _ in adj]
    parent = [None for _ in adj]
    d[s], parent[s] = 0, s
    Q = PriorityQueue()    
    V = len(adj)
    for v in range(V):
        Q.insert(v, d[v])   # label and key
    for _ in range(V):
        u = Q.extract_min() # get label for item with min key
        for v in adj[u]:
            try_to_relax(adj, w, d, parent, u, v)
            Q.decrease_key(v, d[v]) # alter key for given label
    return d, parent

class PriorityQueue:
    def __init__(self):
        self.A = {}
        
    def insert(self, label, key):
        self.A[label] = key
    
    def extract_min(self):
        min_label = None
        for label in self.A:
            if (min_label is None) or (self.A[label] < self.A[min_label]):
                min_label = label
        del self.A[min_label]
        return min_label
    
    def decrease_key(self, label, key):
        if (label in self.A) and (key < self.A[label]):
            self.A[label] = key
            
            
class Item:
    def __init__(self, label, key):
        self.label, self.key = label, key
    
    def __lt__(self, other):
        return self.key < other.key
        
class PriorityQueue:
    def __init__(self):
        self.A = []
        self.label_2_idx = dict()
        
    def insert(self, label, key):
        item = Item(label, key)
        self.A.append(item)
        idx= len(self.A) - 1
        self.label_2_idx[label] = idx
        heapq._siftdown(self.A, 0, idx)
        
    def extract_min(self):
        label = self.A[0].label
        self.A[0], self.A[-1] = self.A[-1], self.A[0]
        self.label_2_idx[self.A[0].label] = 0
        self.label_2_idx.pop(self.A[-1].label)
        self.A.pop()
        if self.A: heapq._siftup(self.A, 0)



Correctness  

Claim: At end of Dijkstra's algorithm  for all 

Proof:

If relaxation sets  to , then  at the end of the algorithm

Relaxation can only decrease estimates 
Relaxation is safe, i.e., maintains that each  is weight of a path to  (or )

Suffices to show  when vertex  is removed from 

Proof by induction on first  vertices removed from 

Base Case (  = 1):  is first vertex removed from , and 

Inductive Step: Assume true for  , consider  th vertex  removed from 

Consider some shortest path  from  to , with  

Let  be the first edge in  where  is not among first  (perhaps  )

When  was removed from ,  by induction, so:

So  as desired

Running Time  

Operation Time Occurrences in Dijkstra

Q.build(X) 1

Q.delete_min() |V|

Q.decrease_key(id, k) |E|

Count operations on changeable priority queue Q, assuming it contains n items: 

Total running time is 

Assume pruned graph to search only vertices reachable from the source, so 

TBC  

15 Recursive Algorithms  
Notes  

        return label
    
    def decrease_key(self, label, key):
        if label in self.label_2_idx:
            idx = self.label_2_idx[label]
            if self.A[idx].key < key:
                self.A[idx].key = key
                heapq._siftdown(self.A, 0, idx)
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Class Graph

Brute Force Star

Decrease & Conquer Chain

Divide & Conquer Tree

Dynamic Programming DAG

Greedy / Incremental Subgraph

Design your own recursive algorith  

Constant-sized program to solve arbitrary input
Need looping or recursion, analyze by induction
Recursive function call: vertex in a graph, directed edge from  if  calls 
Dependency graph of recursive calls must be acyclic (if can terminate)
Classify based on shape of graph

Hard part is thinking inductively to construct recurrence on subproblems

How to solve a problem recursively (SRT BOT)

Subproblem definition
Relate subproblem solutions recursively
Topological order on subproblems (  subproblem DAG)
Base cases of relation
Original problem solution via subproblems(s)
Time analysis

Merge Sort in SRT BOT Framework  

Merge sorting an array  of  elements can be expressed in SRT BOT as follows:
Subproblems:  sorted array on elements of  for 
Relation:  where 
Topological order: Increasing 
Base cases: 
Original: 
Time: 

Fibonacci Numbers  

Compute the th Fibonacci number 
Subproblems:  the th Fibonacci number  for 
Relation:  (definition of Fibonacci numbers)
Topological order: Increasing 
Base cases: 
Original problem: 

Divide and conquer implies a tree of recursive calls
Time:  exponential... :(
Subproblem  computed more than once! (  times)
Can we avoid this waste?

def fib(n):
    if n < 2: return n
    return fib(n-1) + fib(n-2)
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Re-using Subproblem Solutions  

Either:

Top down: record subproblem solutions in a memo and re-use
Bottom up: solve subproblems in topological sort order (usually via loops)

For Fibonacci,  subproblems (vertices) and  dependencies (edges)

Time to compute is then  additions

A subtlety is that Fibonacci numbers grow to  bits long, potentially  word size 
Each addition costs  time
So total cost is  time

Dynamic Programming  

Weird name coined by Richard Bellman

Wanted government funding, needed cool name to disguise doing mathematics!
Updating (dynamic) a plan or schedule (program)

Existence of recursive solution implies decomposable subproblems

Recursive algorithm implies a graph of computation

Dynamic programming if subproblem dependencies overlap (DAG, in-degree > 1)

"Recurse but re-use" (Top down: record and lookup subproblem solutions)

"Careful brute force" (Bottom up: do each subproblem in order)

Often useful for counting/optimization problems: almost trivially correct recurrences

How to Solve a Problem Recursively (SRT BOT)  

Subproblem definition subproblem 

Describe the meaning of a subproblem in words, in terms of parameters
Often subsets of input: prefixes, suffixes, contiguous substrings of a sequence
Often record partial state: add subproblems by incrementing some auxiliary variable

Relate subproblem solutions recursively  for one or more 

Topological order: to argue relation is acyclic and subproblems form a DAG

Base cases

State solutions for all (reachable) independent subproblems where relation breaks down
Original problem

Show how to compute solution to original problem from solutions to subproblem(s)
Possibly use parent pointers to recover actual solution, not just objective function

def fib(n):
    memo = dict()
    def F(i):
        if i < 2: return i
        if i not in memo:
            memo[i] = F(i-1) + F(i-2)
        return memo[i]
   return F(n)

def fib(n):
    F = dict()
    F[0], F[1] = 0, 1
    for i in range(2, n+1):
        F[i] = F[i-1] + F[i-2]
    return F[n]
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Time analysis

 or if  for all , then 
 measures non-recursive work in relation; treat recursions as taking  time

DAG Shortest Paths  

DAG SSSP problem: given a DAG G and vertex , compute  for all 

Subproblems:  for all 

Relation: 

Topological order: Topological order of G

Base case: 

Original: All subproblem

Time: 

DAG Relaxation computes the same min values as this dynamic program, just

step-by-step (if new value < min, update min via edge relaxation), and 
from the perspective of  and  instead of  and 

How to Relate Subproblem Solutions  

The general approach we're following to define a relation on subproblem solutions:

Identify a question about a subproblem solution that, if you knew the answer to, would reduce 
to "smaller" subproblem(s)
Then locally brute-force the question by trying all possible answers, and taking the best
Alternatively, we can think of correctly guessing the answer to the question, and directly 
recursing; but then we actually check all possible guesses, and return the "best"

The key for efficiency is for the question to have a small (polynomial) number of possible answers, so 
brute forcing is not too expensive

Often (but not always) the non-recursive work to compute the relation is equal to the number of 
answers we’re trying 

16 Dynamic Programming Subproblems  
Notes  

Longest Common Subsequence (LCS)  

Given two strings  and , find a longest (not necessarily contiguous) subsequence of  that is also 
a subsequence of .
Example: 
Solution:  or  or  or , all length 5
Maximization problem on length of subsequence

1. Subproblems:

 length of the longest common subsequence of suffixes  and 
For  and  

2. Relate:

Either first characters match or they don't
If first characters match, some longest common subsequence will use them
(if no LCS uses first matched pair, using it will only improve solution)
(if an LCS uses first in  but not first in , matching  is also optimal)
If they do not match, they cannot both be in a longest common subsequence
Guess whether  or  is not in LCS
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3. Topological order:

Subproblem  depend only on strictly larger  or  or both
Simplest order to state: Decreasing 
Nice order for bottom-up code: Decreasing , then decreasing 

4. Base

 (one string is empty)
5. Original problem

Length of longest common subsequence of  and  is 
Store parent pointers to reconstruct subsequencce
If the parent pointer increases both indices, add that character to LCS

6. Time:

# subproblems: 
work per subproblem: 

 running time

Longest Increasing Subsequence (LIS)  

Given a string , find a longest (not necessarily contiguous) subsequence of  that strictly increases 
(lexicographically). 

Example:  

Solution:  of length 5

Maximization problem on length of subsequence

Attempted solution:

Natural subproblems are prefixes or suffixes of , say suffix 
Natural question about LIS of : is  in the LIS? (2 possible answers)
But then how do we recurse on  and guarantee increasing subsequence? 
Fix: add constraint to subproblems to give enough structure to achieve increasing property

1. Subproblems

 = length of longest increasing subsequence of suffix  that includes 
For 

def lcs(A, B):
    a, b = len(A), len(B)
    x = [[0] * (b + 1) for _ in range(a + 1)]
    for i in reversed(range(a)):
        for j in reversed(range(b)):
            if A[i] == B[j]:
                x[i][j] = x[i + 1][j + 1] + 1
            else:
                x[i][j] = max(x[i + 1][j], x[i][j + 1])
    return x[0][0]

def lcs(A, B):
    a, b = len(A), len(B)
    x = [[0] * (b + 1) for _ in range(a + 1)]
    for i in range(1, a + 1):
        for j in range(1, b + 1):
            if A[i] == B[j]:
                x[i][j] = x[i - 1][j - 1] + 1
            else:
                x[i][j] = max(x[i - 1][j], x[i][j - 1])
    return x[0][0]
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2. Relate

We're told that  is in LIS (first element)

Next question: what is the second element of LIS?

Could be any  where  and  (so increasing)
Or  might be the last element of LIS

3. Topological order:

Decreasing 
4. Base

No base case necessary, because we consider the possibility that  is last
5. Original problem

What is the first element of LIS? Guess!
Length of LIS of  is 
Store parent pointers to reconstruct subsequence

6. Time

# subproblems: 
work per subproblem 

 running time
speed up to  by doing only  work per subproblem, via AVL tree 
augmentation

Alternating Coin Game  

Given sequence of n coins of value  
Two players (“me” and “you”) take turns
In a turn, take first or last coin among remaining coins
My goal is to maximize total value of my taken coins, where I go first
First solution exploits that this is a zero-sum game: I take all coins you don’t

1. Subproblems

Choose subproblems that correspond to the state of the game
For every contiguous subsequence of coins from  to , 

 maximum total value I can take starting from coins of values 
2. Relate

I must choose either coin  or coin  (Guess!)
Then it's your turn, so you'll get values  or  respectively
To figure out how much value I get, subtract this from total coin values

  ???
3. Topological order

Increasing 
4. Base

5. Original problem

def lis(A):
    a = len(A)
    x = [1] * a
    for i in reversed(range(a)):
        for j in range(i, a):
            if A[j] > A[i]:
                x[i] = max(x[i], 1 + x[j])
    return max(x)
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store parent pointers to reconstruct strategy
6. Time

# subproblems:  
work per subproblem:  to compute sums

 running time
Speed up to  time by pre-computing all sums  in  time via dynamic 
programming

Second solution uses subproblem expansion: add subproblems for when you move next

1. Subproblems

Choose subproblems that correspond to the full state of the game
Contiguous subsequence of coins from  to , and which player  goes next

 maximum total value I can take when player  starts from coins of 
values 

2. Relate

Player  must choose either coin  or coin  (Guess!)
If  me, then I get the value; otherwise, I get nothing
Then it’s the other player’s turn

3. Topological order

Increasing 
4. Base

5. Original problem

Store parent pointers to reconstruct strategy
6. Time

# subproblems: 
work per subproblem: 

 running time

Yet another alternative solution.

def coin_game(coins):
    n = len(coins)
    dp = [[0] * n for _ in range(n)]    
    for i in reversed(range(n)):
        for j in range(i, n):
            if i == j: 
                d[i][j] = coins[i]
            else:
                dp[i][j] = max(coins[i] - dp[i+1][j], coins[j] - dp[i][j-1])
    return dp[0][n-1] >= 0

def coin_game(coins):
    n = len(coins)
    dp = [[0] * n for _ in range(n)]
    parents = dict()
    
    for i in reversed(range(n)):
        for j in range(i, n):
            if i == j: 



Subproblem Constraints and Expansion  

We've now seen two examples of constraining or expanding subproblems
If you find yourself lacking information to check the desired conditions of the problem, or lack the 
natural subproblem to recurse on, try subproblem constraint/expansion!
More subproblems and constraints give the relation more to work with, so can make DP more 
feasible 
Usually a trade-off between number of subproblems and branching/complexity of relation
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Single-Source Shortest Paths Revisited  

1. Subproblems

Expand subproblems to add information to make acyclic!
 weight of shortest path from  to  using at most  edges

For  and 
2. Relate:

Guess last edge  on shortest path from  to 
 

3. Topological order:

Increasing k: subproblems depend on subproblems only with strictly smaller .
4. base

  and  for  (no edges)
5. Original problem

If has finte shortest path, then 
Otherwise some , so path contains a negative-weight cycle
Can keep track of parent pointers to subproblem that minimized recurrence

6. Time

# subproblems: 

Work for subproblem 

                d[i][j] = coins[i]
                parents[(l, r)] = ((l, r), coins[l])
            else:
                a = coins[i] - dp[i+1][j]
                b = coins[j] - dp[i][j-1]
                if a > b:
                    dp[i][j] = a
                    parents[(l, r)] = ((l+1, r), nums[l])
                else:
                    dp[i][j] = b
                    parents[(l, r)] = ((l, r-1), nums[r])
                    
    if dp[0][n-1] >= 0
        state = (0, n-1)
        turn = 1
        while parents[state][0] != state:
            print(f"player {turn % 2} took {parents[state][1]}")
            state = parents[state][0]
            turn += 1
        
    return dp[0][n-1] >= 0
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This is just Bellman-Ford! (computed in a slightly different order)

All-Pairs Shortest Paths: Floyd-Warshall  

Could define subproblem  minimum weight of path from  to  using at most  edges, as 
in Bellman-Ford
Resulting running time is  times Bellman-Ford, i.e., 
Know a better algorithm from L14: Johnson achieves  
Can achieve  running time (matching Johnson for dense graphs) with a simple dynamic 
program, called Floyd-Warshall.
Number vertices so that 

1. Subproblems:

 minimum weight of a path from  to  that only uses vertices from 

For  and 
2. Relate

 
Only constant branching! No longer guessing previous vertex/edge

3. Topological order

Increasing : relation depends only on smaller 
4. Base

 if 
 if none of the above

5. Original problem

 for all 
6. Time

 subproblems
Each  work

 in total
Constant number of dependencies per subproblem brings the factor of  in the running 
time down to 
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